
Emina Torlak
emina@cs.washington.edu

CSE 403: Software Engineering, Spring 2015
courses.cs.washington.edu/courses/cse403/15sp/

Static Analysis

mailto:emina@cs.washington.edu
http://courses.cs.washington.edu/courses/cse403/15sp/

Outline

2

• What is static analysis?

• How does it work?

• Free and commercial tools

whata brief introduction to static analysis

What is static analysis?

4

• A static analysis tool S analyzes the
source code of a program P to determine
whether it satisfies a property φ, such as

• “P never deferences a null pointer”

• “P does not leak file handles”

• “No cast in P will lead to a
ClassCastException”

• …

What is static analysis?

4

• A static analysis tool S analyzes the
source code of a program P to determine
whether it satisfies a property φ, such as

• “P never deferences a null pointer”

• “P does not leak file handles”

• “No cast in P will lead to a
ClassCastException”

• …

But it is impossible to write
such a tool! For any
nontrivial property φ, there
is no general automated
method to determine
whether P satisfies φ
(Rice’s theorem).

What is static analysis?

4

• A static analysis tool S analyzes the
source code of a program P to determine
whether it satisfies a property φ, such as

• “P never deferences a null pointer”

• “P does not leak file handles”

• “No cast in P will lead to a
ClassCastException”

• …

But it is impossible to write
such a tool! For any
nontrivial property φ, there
is no general automated
method to determine
whether P satisfies φ
(Rice’s theorem).

So, why are we
having this lecture?

What is practical static analysis?

5

What is practical static analysis?

5

• A static analysis tool S analyzes the source code of a
program P to determine whether it satisfies a property
φ, but it can be wrong in one of two ways:

What is practical static analysis?

5

• A static analysis tool S analyzes the source code of a
program P to determine whether it satisfies a property
φ, but it can be wrong in one of two ways:

• If S is sound, it will never miss any violations, but it may
say that P violates φ even though it doesn’t (resulting in
false positives).

What is practical static analysis?

5

• A static analysis tool S analyzes the source code of a
program P to determine whether it satisfies a property
φ, but it can be wrong in one of two ways:

• If S is sound, it will never miss any violations, but it may
say that P violates φ even though it doesn’t (resulting in
false positives).

• If S is complete, it will never report false positives, but it
may miss real violations of φ (resulting in false negatives).

What is practical static analysis?

5

• A static analysis tool S analyzes the source code of a
program P to determine whether it satisfies a property
φ, but it can be wrong in one of two ways:

• If S is sound, it will never miss any violations, but it may
say that P violates φ even though it doesn’t (resulting in
false positives).

• If S is complete, it will never report false positives, but it
may miss real violations of φ (resulting in false negatives).

What is a trivial way to
implement a sound analysis?
A complete analysis?

Soundness vs completeness

6

sound (overapproximate) analysis

possible program behaviors

complete
(underapproximate)
analysis

Applications of static analysis

7

• Compilers (sound)

• type checking, liveness analysis, alias analysis, …

• Bug finding (usually complete)

• Verification (sound)

howstatic analysis by example

A toy static analysis: find a computation’s sign

9

A toy static analysis: find a computation’s sign

9

• Given a program P, determine the sign (positive,
negative, or zero) of all of its variables.

A toy static analysis: find a computation’s sign

9

• Given a program P, determine the sign (positive,
negative, or zero) of all of its variables.

• Applications:

• Check for division by 0

• Optimize by storing + variables as unsigned integers

• Check for negative array indices

• …

A toy static analysis: abstraction

10

concrete domain of ints abstract domain of signs

⊕

⊖

⊚

positive ints

negative ints

zero

x = 5

x = -5

x = 0

x = b ? -1 : 1

x = y / 0

A toy static analysis: abstraction

10

concrete domain of ints abstract domain of signs

⊕

⊖

⊚

positive ints

negative ints

zero

x = 5

x = -5

x = 0

x = b ? -1 : 1

x = y / 0

A toy static analysis: abstraction

10

concrete domain of ints abstract domain of signs

⊕

⊖

⊚

positive ints

negative ints

zero

x = 5

x = -5

x = 0

x = b ? -1 : 1

x = y / 0

A toy static analysis: abstraction

10

concrete domain of ints abstract domain of signs

⊕

⊖

⊚

⊤

positive ints

negative ints

zero

all ints (unknown)

x = 5

x = -5

x = 0

x = b ? -1 : 1

x = y / 0

A toy static analysis: abstraction

10

concrete domain of ints abstract domain of signs

⊕

⊖

⊚

⊤

positive ints

negative ints

zero

all ints (unknown)

x = 5

x = -5

x = 0

x = b ? -1 : 1

x = y / 0

A toy static analysis: abstraction

10

concrete domain of ints abstract domain of signs

⊕

⊖

⊚

⊤

⊥

positive ints

negative ints

zero

all ints (unknown)

no ints (undefined)

x = 5

x = -5

x = 0

x = b ? -1 : 1

x = y / 0

A toy static analysis: abstraction

11

⊕⊖ ⊚

⊤

⊥ {}

{0} {i | i > 0}{i | i < 0}

Z

A toy static analysis: abstraction

11

⊕⊖ ⊚

⊤

⊥ {}

{0} {i | i > 0}{i | i < 0}

Z

⊆ ⊆ ⊆

⊆⊆⊆

A toy static analysis: transfer functions

12

• Transfer functions specify how to evaluate program
expressions on abstract values.

• ⊕ + ⊕ = ⊕

• ⊖ + ⊖ = ⊖

• ⊚ + ⊚ = ⊚

• ⊕ + ⊖ = ⊤

• ⊤ / ⊚ = ⊥

• …

A toy static analysis: transfer functions

12

• Transfer functions specify how to evaluate program
expressions on abstract values.

• ⊕ + ⊕ = ⊕

• ⊖ + ⊖ = ⊖

• ⊚ + ⊚ = ⊚

• ⊕ + ⊖ = ⊤

• ⊤ / ⊚ = ⊥

• …

A toy static analysis: transfer functions

12

• Transfer functions specify how to evaluate program
expressions on abstract values.

• ⊕ + ⊕ = ⊕

• ⊖ + ⊖ = ⊖

• ⊚ + ⊚ = ⊚

• ⊕ + ⊖ = ⊤

• ⊤ / ⊚ = ⊥

• …

A toy static analysis: transfer functions

12

• Transfer functions specify how to evaluate program
expressions on abstract values.

• ⊕ + ⊕ = ⊕

• ⊖ + ⊖ = ⊖

• ⊚ + ⊚ = ⊚

• ⊕ + ⊖ = ⊤

• ⊤ / ⊚ = ⊥

• …

A toy static analysis: transfer functions

12

• Transfer functions specify how to evaluate program
expressions on abstract values.

• ⊕ + ⊕ = ⊕

• ⊖ + ⊖ = ⊖

• ⊚ + ⊚ = ⊚

• ⊕ + ⊖ = ⊤

• ⊤ / ⊚ = ⊥

• …

A toy static analysis: transfer functions

12

• Transfer functions specify how to evaluate program
expressions on abstract values.

• ⊕ + ⊕ = ⊕

• ⊖ + ⊖ = ⊖

• ⊚ + ⊚ = ⊚

• ⊕ + ⊖ = ⊤

• ⊤ / ⊚ = ⊥

• …

A toy static analysis: an example

13

a = 5;
b = -3;
c = a * b;
d = 0;
e = c * d;
f = 10 / e;

A toy static analysis: an example

13

a = 5;
b = -3;
c = a * b;
d = 0;
e = c * d;
f = 10 / e;

a = ⊕;

A toy static analysis: an example

13

a = 5;
b = -3;
c = a * b;
d = 0;
e = c * d;
f = 10 / e;

a = ⊕;
b = ⊖;

A toy static analysis: an example

13

a = 5;
b = -3;
c = a * b;
d = 0;
e = c * d;
f = 10 / e;

a = ⊕;
b = ⊖;
c = ⊖;

A toy static analysis: an example

13

a = 5;
b = -3;
c = a * b;
d = 0;
e = c * d;
f = 10 / e;

a = ⊕;
b = ⊖;
c = ⊖;
d = ⊚;

A toy static analysis: an example

13

a = 5;
b = -3;
c = a * b;
d = 0;
e = c * d;
f = 10 / e;

a = ⊕;
b = ⊖;
c = ⊖;
d = ⊚;
e = ⊚;

A toy static analysis: an example

13

a = 5;
b = -3;
c = a * b;
d = 0;
e = c * d;
f = 10 / e;

a = ⊕;
b = ⊖;
c = ⊖;
d = ⊚;
e = ⊚;
f = ⊥;

A toy static analysis: an example

13

a = 5;
b = -3;
c = a * b;
d = 0;
e = c * d;
f = 10 / e;

a = ⊕;
b = ⊖;
c = ⊖;
d = ⊚;
e = ⊚;
f = ⊥;

Detected division by zero!
Just look for variables that
the analysis maps to ⊥.

a = 5;
b = -3;
c = a + b;
d = 0;
e = c - d;
f = 10 / e;

A toy static analysis: another example

14

a = 5;
b = -3;
c = a + b;
d = 0;
e = c - d;
f = 10 / e;

a = ⊕;

A toy static analysis: another example

14

a = 5;
b = -3;
c = a + b;
d = 0;
e = c - d;
f = 10 / e;

a = ⊕;
b = ⊖;

A toy static analysis: another example

14

a = 5;
b = -3;
c = a + b;
d = 0;
e = c - d;
f = 10 / e;

a = ⊕;
b = ⊖;
c = ⊤;

A toy static analysis: another example

14

a = 5;
b = -3;
c = a + b;
d = 0;
e = c - d;
f = 10 / e;

a = ⊕;
b = ⊖;
c = ⊤;
d = ⊚;

A toy static analysis: another example

14

a = 5;
b = -3;
c = a + b;
d = 0;
e = c - d;
f = 10 / e;

a = ⊕;
b = ⊖;
c = ⊤;
d = ⊚;
e = ⊤;

A toy static analysis: another example

14

a = 5;
b = -3;
c = a + b;
d = 0;
e = c - d;
f = 10 / e;

a = ⊕;
b = ⊖;
c = ⊤;
d = ⊚;
e = ⊤;
f = ⊤;

A toy static analysis: another example

14

a = 5;
b = -3;
c = a + b;
d = 0;
e = c - d;
f = 10 / e;

a = ⊕;
b = ⊖;
c = ⊤;
d = ⊚;
e = ⊤;
f = ⊤;

A toy static analysis: another example

14

False positive! This program
can never throw an error, but
the analysis reports that f
may contain any value
(including undefined).

toolsstate-of-the-art static analysis tools

Some state-of-the-art static analysis tools

16

• Astree

• Coverity

• Java PathFinder

• …

Astree (sound)

17

• Proves the absence of runtime errors and undefined
behavior in C programs.

• Used to prove absence of runtime errors in

• Airbus flight control software

• Docking software for the International Space Station

• Many man-years of effort (since 2001) to develop.

• See www.astree.ens.fr/

http://www.astree.ens.fr/

Coverity (neither sound nor complete)

18

• Looks for bugs in C, C++, Java, and C#.

• Used by

• >1100 companies.

• NASA JPL (in addition to many other tools).

• Offered as a free, cloud-based service for
open-source projects.

• See www.coverity.com

http://www.astree.ens.fr/

Java PathFinder (sound but can be imprecise)

19

• Finds bugs in mission-critical Java code.

• Developed by NASA.

• Focuses on concurrency errors (race
conditions), uncaught exceptions.

• Free and open source!

• See babelfish.arc.nasa.gov/trac/jpf

http://www.astree.ens.fr/

Summary

20

• Static analysis tools check if a program P
satisfies a property φ by

• (sound) overapproximation of P

• (complete) underapproximation of P

• Many uses from compilers to bug finding
to verification.

• Many high-quality tools available.

