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Outline
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• What is static analysis?

• How does it work?

• Free and commercial tools
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whether it satisfies a property φ, such as 

• “P never deferences a null pointer”

• “P does not leak file handles”

• “No cast in P will lead to a 
ClassCastException”

• …

But it is impossible to write 
such a tool!  For any 
nontrivial property φ, there 
is no general automated 
method to determine 
whether P satisfies φ 
(Rice’s theorem).

So, why are we 
having this lecture?
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• A static analysis tool S analyzes the source code of a 
program P to determine whether it satisfies a property 
φ, but it can be wrong in one of two ways:

• If S is sound,  it will never miss any violations, but it may 
say that P violates φ even though it doesn’t (resulting in 
false positives).

• If S is complete, it will never report false positives, but it 
may miss real violations of φ (resulting in false negatives).

What is a trivial way to 
implement a sound analysis?  
A complete analysis?



Soundness vs completeness
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sound (overapproximate) analysis

possible program behaviors

complete 
(underapproximate) 
analysis



Applications of static analysis
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• Compilers (sound) 

• type checking, liveness analysis, alias analysis, …

• Bug finding (usually complete)

• Verification (sound)



howstatic analysis by example
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• Given a program P, determine the sign (positive, 
negative, or zero) of all of its variables.

• Applications:

• Check for division by 0

• Optimize by storing + variables as unsigned integers

• Check for negative array indices 

• …
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concrete domain of ints abstract domain of signs

⊕

⊖

⊚

⊤

⊥

positive ints

negative ints

zero

all ints (unknown)

no ints (undefined)

x = 5

x = -5

x = 0

x = b ? -1 : 1

x = y / 0
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⊕⊖ ⊚

⊤

⊥ {}

{0} {i | i > 0}{i | i < 0}

Z
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⊕⊖ ⊚

⊤

⊥ {}

{0} {i | i > 0}{i | i < 0}

Z

⊆ ⊆ ⊆

⊆⊆⊆
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a = 5; 
b = -3; 
c = a * b; 
d = 0; 
e = c * d; 
f = 10 / e;

a = ⊕;
b = ⊖;
c = ⊖;
d = ⊚;
e = ⊚;
f = ⊥;

Detected division by zero!  
Just look for variables that 
the analysis maps to ⊥.
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False positive!  This program 
can never throw an error, but 
the analysis reports that f 
may contain any value 
(including undefined).
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• Astree

• Coverity

• Java PathFinder

• …



Astree (sound)
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• Proves the absence of runtime errors and undefined 
behavior in C programs.

• Used to prove absence of runtime errors in 

• Airbus flight control software

• Docking software for the International Space Station

• Many man-years of effort (since 2001) to develop.

• See www.astree.ens.fr/

http://www.astree.ens.fr/


Coverity (neither sound nor complete)
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• Looks for bugs in C, C++, Java, and C#.

• Used by 

• >1100 companies.

• NASA JPL (in addition to many other tools).

• Offered as a free, cloud-based service for 
open-source projects.

• See www.coverity.com

http://www.astree.ens.fr/


Java PathFinder (sound but can be imprecise)
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• Finds bugs in mission-critical Java code.

• Developed by NASA.

• Focuses on concurrency errors (race 
conditions), uncaught exceptions.

• Free and open source!

• See babelfish.arc.nasa.gov/trac/jpf

http://www.astree.ens.fr/


Summary
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• Static analysis tools check if a program P 
satisfies a property φ by

• (sound) overapproximation of P 

• (complete) underapproximation of P

• Many uses from compilers to bug finding 
to verification.

• Many high-quality tools available.


