
Architecture
CSE 403

Fallingwater by Frank Lloyd Wright



Outline

• What is a software architecture?

• What does an architecture look like?

• What is a good architecture?

• Properties of architectures

• Example architectures



Why architecture?

“Good software architecture makes 
the rest of the project easy.”

Steve McConnell, Survival Guide

“There are two ways of constructing a 
software design:

one way is to make it so simple that there 
are obviously no deficiencies;

the other is to make it so complicated that 
there are no obvious deficiencies.”

C.A.R. Hoare



The basic problem:

From requirements to code

Requirements

Code

?????

How do you bridge the gap
between requirements
and code?



One answer:

Solve with inspiration

Requirements

Code

a miracle happens



A better answer:

Solve with engineering

Requirements

Code

Software Architecture

Provides a high-level 
framework to 
build and evolve the 
system



What does an architecture look like?



Box-and-arrow diagrams

Very common and hugely valuable.

But, what does a box represent?  
an arrow?  
a layer? 
adjacent boxes?



Box and arrow diagrams redux



An architecture:
components and connectors

• Components define the basic computations 
comprising the system and their behaviors
– abstract data types, filters, etc.

• Connectors define the interconnections between 
components
– procedure call, event announcement, 

asynchronous message sends, etc.

• The line between them may be fuzzy at times
– Ex: A connector might (de)serialize data, but can it 

perform other, richer computations?



UML diagrams

• UML = universal modeling language

• A standardized way to describe (draw) 
architecture

– Also implementation details such as subclassing, 
uses (dependences), and much more

• Widely used in industry

• Not the topic of this lecture



12

What is a good architecture?

• Satisfies functional and performance 
requirements

• Manages complexity

• Accommodates future change

• Is concerned with

– reliability, safety, understandability, compatibility, 
robustness, …



Divide and conquer

• Benefits of decomposition:
– Decrease size of tasks
– Support independent testing and analysis
– Separate work assignments
– Ease understanding

• Use of abstraction leads to modularity
– Implementation techniques:  information hiding, 

interfaces

• To achieve modularity, you need:
– Strong cohesion within a component
– Loose coupling between components
– And these properties should be true at each level



An architecture helps with

System understanding: interactions between 
modules
Reuse: high-level view shows opportunity for reuse
Construction: breaks development down into work 
items; provides a path from requirements to code
Evolution: high-level view shows evolution path
Management: helps understand work items and 
track progress
Communication: provides vocabulary; a picture 
says 1000 words



Qualities of modular software

• decomposable
– can be broken down into pieces

• composable
– pieces are useful and can be combined

• understandable
– one piece can be examined in isolation

• has continuity
– change in reqs affects few modules

• protected / safe
– an error affects few other modules



Interface and implementation

• public interface: data and behavior of the object that 
can be seen and executed externally by "client" code

• private implementation: internal data and methods in 
the object, used to help implement the public 
interface, but cannot be directly accessed

• client: code that uses your class/subsystem

Example: radio
– public interface is the speaker, volume buttons, station dial
– private implementation is the guts of the radio; the 

transistors, capacitors, voltage readings, frequencies, etc. 
that user should not see

16



Properties of architecture

• Coupling

• Cohesion

• Style conformity

• Matching



Coupling (loose vs. tight)

• Coupling:  the kind and quantity of 

interconnections among modules

• Modules that are loosely coupled (or uncoupled) 

are better than those that are tightly coupled

• The more tightly coupled two modules are, the 

harder it is to work with them separately



Tightly or loosely coupled?

User Interface Graphics

Data Storage
Application Level Classes

Business Rules Enterprise Level Tools

-End1

*

-End2

*-End3

*

-End4*

-End5

*

-End6

*

-End7*

-End8*

-End9*

-End10

*

-End11*

-End12*

-End13

*

-End14*

-End15

*

-End16

*

-End17

*

-End18

*

-End19*

-End20*

-End21

*

-End22

*

-End23*

-End24*
-End25*

-End26*



Tightly or loosely coupled?
User Interface Graphics

Data Storage Application Level Classes

Business Rules Enterprise Level Tools

-End1

*

-End2

*

-End3*

-End4

*

-End5*

-End6*

-End9

*

-End10

*

-End11

*

-End12

*

-End13*

-End14*

-End15*

-End16*

-End7*

-End8 *



Cohesion (strong vs. weak)

• Cohesion:  how closely the operations in a 
module are related

• Tight relationships improve clarity and 
understanding

• A class with good abstraction usually has 
strong internal cohension

• No schizophrenic classes!



Strong or weak cohesion?
class Employee {

public:
…
FullName GetName() const;
Address GetAddress() const;
PhoneNumber GetWorkPhone() const;
…
bool IsJobClassificationValid(JobClassification jobClass);
bool IsZipCodeValid (Address address);
bool IsPhoneNumberValid (PhoneNumber phoneNumber);
…
SqlQuery GetQueryToCreateNewEmployee() const;
SqlQuery GetQueryToModifyEmployee() const;
SqlQuery GetQueryToRetrieveEmployee() const;
…

}



Style conformity:  What is a style?

• An architectural style defines
– The vocabulary of components and connectors for a 

family (style)
– Constraints on the elements and their combination

• Topological constraints (no cycles, register/announce 
relationships, etc.)

• Execution constraints (timing, etc.)

• By choosing a style, one gets all the known 
properties of that style (for any architecture in 
that style)
– For example: performance, lack of deadlock, ease of 

making particular classes of changes, etc.



An architectural style imposes constraints

• Pipes & filters

– Pipes must compute local transformations

– Filters must not share state with other filters

– There must be no cycles

• If these constraints are violated, it’s not a pipe & filter system

– One can’t tell this from a picture

– One can formalize these constraints

scan parse optimize generate



The design and the reality

• The code is often less clean than the design

• The design is still useful

– communication among team members

– selected deviations can be explained more concisely and 
with clearer reasoning



Interface mismatch

• Mars orbiter loss

NASA lost a $125 million Mars orbiter because one 
engineering team used metric units while another 
used Imperial units



Architectural mismatch

• Some components are inherently 
incompatible

– Assumptions about memory allocation, vs. custom 
allocator

– Use of two frameworks (assumes it is main)

– Library wants to operate first or last

– Data formats

– Assumed infrastructure



Architectural mismatch example

• Garlan, Allen, Ockerbloom tried to build a toolset to support software 
architecture definition from existing components

– OODB (OBST)

– graphical user interface toolkit (Interviews)

– RPC mechanism (MIG/Mach RPC)

– Event-based tool integration mechanism (Softbench)

• Failure:  each piece worked, but they didn’t fit together
– Excessive code size

– Poor performance

– Needed to modify out-of-the-box components (e.g., memory allocation)

– Error-prone construction process

• Architectural Mismatch: Why Reuse Is So Hard.  IEEE Software 12, 6 (Nov. 
1995)

• Architecture should warn about such problems (& identify problems)



Views

A view illuminates a set of top-level design decisions

• how the system is composed of interacting parts

• where are the main pathways of interaction

• key properties of the parts

• information to allow high-level analysis and appraisal



Importance of views

Multiple views are needed to understand the 

different dimensions of systems

Functional 
Requirements

Performance 
(execution) 
Requirements

Packaging
Requirements

Installation 
Requirements

Booch



Web application (client-server)

Booch



manipulates

Model-View-Controller

Separates:

• the application object 
(model)

• the way it is represented 
to the user (view)

• the way in which the 
user controls it 
(controller). 

User

Model

ControllerView

Application

sees uses

updates



Pipe and filter

Filter - computes on the data

Pipe – passes the data

,,,

Each stage of the pipeline acts independently of the 
others.
Can you think of a system based on this architecture?

top   |  grep $USER  | grep acrobat



Shared nothing architecture



Blackboard architectures

• The knowledge sources: separate, 
independent units of application 
dependent knowledge. No direct 
interaction among knowledge sources

• The blackboard data structure: problem-
solving state data. Knowledge sources 
make changes to the blackboard that lead 
incrementally to a solution to the 
problem.

• Control: driven entirely by state of 
blackboard. Knowledge sources respond 
opportunistically to changes in the 
blackboard.

35

Blackboard systems have traditionally been used for applications requiring
complex interpretations of signal processing, such as speech and pattern
recognition.



Hearsay-II: blackboard

36



Summary

• An architecture provides a high-level 
framework to build and evolve a 
software system.

• Strive for modularity: strong cohesion 
and loose coupling.

• Consider using existing
architectural styles
or patterns.


