CSE 410 - Computer Systems Autumn 2001

http://www.cs.washington.edu/410

Administrative

- Instructor:
 - Doug Johnson
 - djohnson@cs.washington.edu
- All class info is on the web site
 - http://www.cs.washington.edu/410
 - also known as
 - http://www.cs.washington.edu/education/courses/cse410/01au/

Class Overview

- Provide an introduction to the inner workings of computer systems
- Levels of abstraction
 - bits, bytes, assembly language
 - operating system concepts
 - higher level languages C, C++, Java, ...
 - application programs

Goal

- You will understand
 - what is actually happening when a computer system is running application programs
- So that you will be able to
 - make good design choices as a developer,
 project manager, or system customer
- In other words ...
 - calibrate your hype-o-meter with facts

The structure of this class

- The hardware / software interface
 - the elements of a computer system
 - what parts are visible to the software
 - instruction set architecture (ISA)
- Operating systems
 - services an OS performs for an application
 - design of various OS components

Elements of a computer system

- Start with a point of view
 - purchase a CD on the Web
 - get class schedule from MyUW
 - write a resume using Word
 - write a Java program to do image processing
 - write a C program to read real time data
 - write assembly language for matrix operations
 - write microcode for instruction emulation

"Top Level" elements

- At any level of abstraction, there are
 - elements at that level
 - the building blocks for those elements
- Rope analogy in the book
 - a cable: three hawsers twisted together
 - a hawser: three strands of many yarns
 - down to the molecular level and beyond

Purchase a CD on the Web

- the "top level" system includes
 - your browser, your desktop computer
 - connection to the internet (ISP)
 - server http://www.amazon.com/
 - server application code
 - method="POST"
 - action="/exec/obidos/handle-buy-box=B00005NFZB/..."
 - ...

Write a resume using Word

- the "top level" system includes
 - winword.exe the application program
 - Contemporary Resume.dot document template
 - resume.doc the file containing the text
 - Windows Explorer file manager
 - network file and printer sharing

Write assembly language for matrix operations

- the "top level" system includes
 - programmer's editor (eg, Context)
 - assembler convert source to machine language
 - linker, loader build and run executable
 - Instruction Set Architecture (ISA) that you are writing the code for
 - defines the programmer-visible face of the CPU
 - in this class, we will be writing for MIPS 1 ISA

Layers of abstraction

Abstraction

- isolates a layer from changes in the layer below
- improves developer productivity by reducing detail needed to accomplish a task
- helps define a single <u>architecture</u> that can be implemented with more than one <u>organization</u>

Architecture and Organization

Architecture

- defines elements and interfaces between layers
- ISA: instructions, registers, addressing

Organization

- components and connections
- how instructions are implemented in hardware
- many different organizations can implement a single architecture

Computer Architecture

- Specification of how to program a specific computer family
 - what instructions are available?
 - how are the instructions formatted into bits?
 - how many registers and what is their function?
 - how is memory addressed?
- The MIPS 1 architecture is the basis for the first half of this course

Architecture Families

- IBM 360, 370, ...
- PowerPC 601, 603, ...
- DEC PDP-11
- Intel x86 286, 386, 486, Pentium, ...
- Motorola 680x0
- MIPS R2000, R3000, R4000, R5000, ...

Computer Organization

Processor

- datapath (functional units) manipulate the bits
- control controls the manipulation

Memory

- cache memory smaller, higher speed
- main memory larger, slower speed
- Input / Output
 - interface to the rest of the world

Organizations and Architectures

- Architecture is another abstraction layer
- One architecture can be implemented with many organizations
- One organization can support multiple architectures
- Different manufacturing technologies
 - TTL, ECL, PMOS, NMOS, CMOS
 - ropes and pulleys see Dewdney reference

Many possible implementations

Figure 2.4 The Apraphulian AND gate.

A typical organization

Change Organization or Architecture?

Theory

- Organization changes provide incremental changes in speed and cost for same software
- Architecture changes enable breakthrough changes in speed and cost for new software

Real life

- incremental changes are very rapid
- breakthrough changes are very costly

A quick hardware tour

- System board
 - CPU, memory, I/O bus
- Hard disk
 - 3600+ RPM, 8ms latency, 3-15 ms seek
- Monitor
 - CRT, LCD
- Mouse, keyboard
 - embedded processors

Reading and References

Reading

 Chapter 1, Patterson and Hennessy, Computer Organization & Design

Other References

A. K. Dewdney, The Rope and Pulley Wonder, in *The Tinkertoy Computer*, W. H. Freeman, New York, 1993