
Procedures

CSE 410 - Computer Systems
October 8, 2001

8-Oct-2001 CSE 410 - Procedures 2

Readings and References

• Reading
– Section 4.2, Signed and Unsigned Numbers, P&H

• another presentation of binary, hex, and decimal

• ignore signed numbers for now, we will cover them next week

– Sections 3.6, A5, A6, P&H

• note error in figure 3.13 - $a0-$a3 are not preserved

• Other References
– MIPSpro Assembly Language Programmer’s Guide, document

number 007-2418-001, Silicon Graphics, 1994

<http://techpubs.sgi.com:80/library/tpl/cgi-bin/browse.cgi?coll=0530&db=bks&pth=/SGI_Developer>

8-Oct-2001 CSE 410 - Procedures 3

Instructions and Data flow

main
memory

functional units

program counter
 increments by 4

registers

instructions and
data

instructions
and data

32 bits wide
32 in number

implement instructions

8-Oct-2001 CSE 410 - Procedures 4

Layout of program memory

reserved (4 MB)
0000 0000

003F FFFF

0040 0000

0FFF FFFF

1000 0000
1000 FFFF

program (252 MB)

Not to
Scale!

 global data (64 KB)

7FFF EFFF stack (grows down)

heap (grows up)1001 0000

~1792 MB

reserved (4KB)7FFF FFFF

8-Oct-2001 CSE 410 - Procedures 5

Why use procedures?

• So far, our program is just one long run of
instructions

• We can do a lot this way, but the program
rapidly gets too large to handle easily

• Procedures allow the programmer to
organize the code into logical units

8-Oct-2001 CSE 410 - Procedures 6

What does a procedure do for us?

• A procedure provides a well defined and
reusable interface to a particular capability
– entry, exit, parameters clearly identified

• Reduces the level of detail the programmer
needs to know to accomplish a task

• The internals of a function can be ignored
– messy details can be hidden from innocent eyes

– internals can change without affecting caller

8-Oct-2001 CSE 410 - Procedures 7

How do you use a procedure?

1. set up parameters
2. transfer to procedure

3. acquire storage resources
4. do the desired function
5. make result available to caller

6. return storage resources
7. return to point of call

8-Oct-2001 CSE 410 - Procedures 8

Calling conventions

• The details of how you implement the steps
for using a procedure are governed by the
calling conventions being used

• There is much variation in conventions
– which causes much programmer pain

• Understand the calling conventions of the
system you are writing for
– o32, n32, n64, P&H, cse410, ...

8-Oct-2001 CSE 410 - Procedures 9

1. Set up parameters

• The registers are one obvious place to put
parameters for a procedure to read
– very fast and easily referenced

• Many procedures have 4 or less arguments
– $a0, $a1, $a2, $a3 are used for arguments

• … but some procedures have more
– we don’t want to use up all the registers

– so we use memory to store the rest

8-Oct-2001 CSE 410 - Procedures 10

The Stack

• Stack pointer ($sp) points to the “top” value
on the stack (ie, the lowest address in use)

• There are no “push” or “pop” instructions
– we adjust the stack pointer directly

• stack grows downward towards zero
– subu $sp, $sp, xx : make room for more data

– addu $sp, $sp, xx : release space on the stack

– note that both subu and addu become addiu

8-Oct-2001 CSE 410 - Procedures 11

Dynamic storage on the stack

0x7fffedf8
0x7fffedfc
0x7fffee00

0x7fffedf4
0x7fffedf0
0x7fffedec
0x7fffede8
0x7fffede4

0($sp)
4($sp)
8($sp)

$sp

main:
 subu $sp,$sp,8
 ...

0($sp)
4($sp)
8($sp)

12($sp)
16($sp)

0x7fffedf8 $sp 0x7fffedf0

0x7fffee0412($sp) 20($sp)

towards 0

 ...
 jal main

8-Oct-2001 CSE 410 - Procedures 12

Layout of stack frame

towards 0

argument build area
(if needed)

saved registers
(if needed)

local variables
(if needed)

argument build area
(if needed)

procA:
 subu $sp,$sp,xx
 ...

$sp (on entry)

$sp (after subu)

st
ac

k
fr

am
e

8-Oct-2001 CSE 410 - Procedures 13

Argument build area

• Some calling conventions require that caller
reserve stack space for all arguments
– 16 bytes (4 words) left empty to mirror $a0-$a3

• Other calling conventions require that caller
reserve stack space only for arguments that
do not fit in $a0 - $a3
– so argument build area is only present if some

arguments didn’t fit in 4 registers

8-Oct-2001 CSE 410 - Procedures 14

Agreement

• A procedure and all of the programs that
call it must agree on the calling convention

• This is one reason why changing the calling
convention for system libraries is a big deal

• We will use
– caller reserves stack space for all arguments

– 16 bytes (4 words) left empty to mirror $a0-$a3

8-Oct-2001 CSE 410 - Procedures 15

2. Transfer to procedure

0x7fffedf8
0x7fffedfc
0x7fffee00

0x7fffedf4
0x7fffedf0
0x7fffedec
0x7fffede8
0x7fffede4

0($sp)
4($sp)
8($sp)

$sp

main:
 subu $sp,$sp,8
 ...

0($sp)
4($sp)
8($sp)

12($sp)
16($sp)

0x7fffedf8 $sp 0x7fffedf0

0x7fffee0412($sp) 20($sp)

towards 0

 ...
 jal main

8-Oct-2001 CSE 410 - Procedures 16

Jump and link

• Jump
– can take you anywhere within the currently

active 256 MB segment

• Link
– store return address in $ra

– note: this overwrites current value of $ra

8-Oct-2001 CSE 410 - Procedures 17

3. Acquire storage resources

towards 0

argument build area
(if needed)

saved registers
(if needed)

local variables
(if needed)

argument build area
(if needed)

procA:
 subu $sp,$sp,40
 sw $ra,32($sp)
 sw $s0,28($sp)

$sp (on entry)

$sp (after subu)

st
ac

k
fr

am
e

8-Oct-2001 CSE 410 - Procedures 18

3a. Saved registers

• There is only one set of registers
– If called procedure unexpectedly overwrites

them, caller will be surprised and distressed

• Another agreement
– called procedure can change $a0-$a3, $v0-$v1,

$t0-$t9 without restoring original values

– called procedure must save and restore value of
any other register it wants to use

8-Oct-2001 CSE 410 - Procedures 19

Register numbers and names

0

1

2-3

4-7

8-15, 24, 25

16-23

26,27

28

29

30

31

zero

at

v0, v1

a0-a3

t0-t9

s0-s7

k0, k1

gp

sp

fp or s8

ra

always returns 0

reserved for use as assembler temporary

values returned by procedures

first few procedure arguments

temps - can use without saving

temps - must save before using

reserved for kernel use - may change at any time

global pointer

stack pointer

frame pointer

return address from procedure

number name usage

8-Oct-2001 CSE 410 - Procedures 20

3b. Local variables

• If the called procedure needs to store values
in memory while it is working, space must
be reserved on the stack for them

• Debugging note
– compiler can often optimize so that all variables

fit in registers and are never stored in memory

– so a memory dump may not contain all values

– use switches to turn off optimization (but …)

8-Oct-2001 CSE 410 - Procedures 21

3c. Argument build area

• Our convention is
– caller reserves stack space for all arguments

– 16 bytes (4 words) left empty to mirror $a0-$a3

• If your procedure does more than one call to
other procedures, then ...
– the argument build area must be large enough

for the largest set of arguments

8-Oct-2001 CSE 410 - Procedures 22

Using the stack pointer

• Adjust it once on entry, once on exit
– Initial adjustment should include all the space

you will need in this procedure

• Remember that a word is 4 bytes
– so expect to see references like 8($sp), 20($sp)

• Keep stack pointer double word aligned
– adjust by multiples of 8

8-Oct-2001 CSE 410 - Procedures 23

4. Do the desired function

• You have saved the values of the registers
that must be preserved across the call

• The arguments are in $a0 - $a3 or on the
stack

• The stack pointer points to the end of your
stack frame

• Let ‘er rip

8-Oct-2001 CSE 410 - Procedures 24

5. Make result available to caller

• Registers $v0 and $v1 are available for this
• Most procedures put a 32-bit value in $v0

• Returning the address of a variable?
– be very careful!

– your portion of the stack is invalid as soon as
you return

– the object must be allocated in ancestor’s part
of stack or globally allocated

8-Oct-2001 CSE 410 - Procedures 25

6. Return storage resources

towards 0

argument build area
(if needed)

saved registers
(if needed)

local variables
(if needed)

argument build area
(if needed)

 lw $ra,32($sp)
 lw $s0,28($sp)
 addu $sp,$sp,40
 jr $ra

$sp (after addu)

$sp (while executing)

st
ac

k
fr

am
e

8-Oct-2001 CSE 410 - Procedures 26

7. Return to point of call

• Jump through register
• The address of the instruction following the

jump and link was put in $ra when we were
called (the “link” in jump and link)

• We have carefully preserved $ra while the
procedure was executing

• So, “jr $ra” takes us right back to caller

8-Oct-2001 CSE 410 - Procedures 27

CSE 410 Calling Conventions

• Argument build area
– caller reserves stack space for all arguments

– 16 bytes (4 words) left empty to mirror $a0-$a3

• Called procedure adjusts stack pointer once
on entry, once on exit, in units of 8 bytes

• Registers
– not required to save and restore t0-$t9, $a0-$a3

– must save and restore $s0-s8, $ra if changed

– function results returned in $v0, $v1

