Procedures

CSE 410 - Computer Systems
October 8, 2001

Readings and References
e Reading

— Section 4.2, Signed and Unsigned Numbers, P& H

 another presentation of binary, hex, and decimal

* ignore signed numbers for now, we will cover them next week
— Sections 3.6, A5, A6, P&H

 note error in figure 3.13 - $a0-$a3 are not preserved

e Other References

— MIPSpro Assembly Language Programmer’ s Guide, document
number 007-2418-001, Silicon Graphics, 1994

<http://techpubs.sgi.com:80/library/tpl/cgi-bin/browse.cgi ?col |I=0530& db=bks& pth=/SGI _Developer>

8-Oct-2001 CSE 410 - Procedures

| nstructions and Data flow

I nstructi ons and
dat a

main
memory

| nstructi ons

program counter

i ncrements by 4

and dat a

8-Oct-2001

CSE 410 - Procedures

: 32 bits w de
I’EQIStGI’SBZ I n nunber

functional units

| mpl ement instructions

Layout of program memory

7FFF
7FFF

1001

1000
1000

OFFF

0040
003F
0000

8-Oct-2001

FFEE

reserved (4KB)

EFFF

0000

stack (grows down)

v

~1792 MB

?

heap (grows up)

FFFF
0000

gl obal data (64 KB)

FFFF

0000

program (252 NB)

FFFF
0000

reserved (4 MB)

CSE 410 - Procedures

Not to
Scalel

Why use procedures?

e SO far, our program isjust one long run of
Instructions

e \WWe can do alot thisway, but the program
rapidly getstoo large to handle easily

* Procedures allow the programmer to
organize the code into logical units

8-Oct-2001 CSE 410 - Procedures

What does a procedure do for us?

A procedure provides awell defined and
reusable interface to a particular capability

— entry, exit, parameters clearly identified

* Reducestheleve of detall the programmer
needs to know to accomplish atask

e Theinternals of afunction can be ignored

— messy details can be hidden from innocent eyes

— Internals can change without affecting caller
8-Oct-2001 CSE 410 - Procedures 6

How do you use a procedure?

set up parameters

transfer to procedure

acquire storage resources

do the desired function

make result available to caller
return storage resources
return to point of call

N o ok WD RE

8-Oct-2001 CSE 410 - Procedures

Calling conventions

e Thedetails of how you implement the steps
for using a procedure are governed by the
calling conventions being used

e Thereis much variation in conventions
— which causes much programmer pain
« Understand the calling conventions of the

system you are writing for
— 032, n32, n64, P& H, cse410, ...

8-Oct-2001 CSE 410 - Procedures

1. Set up parameters

* Theregisters are one obvious place to put
parameters for a procedure to read

— very fast and easlly referenced

 Many procedures have 4 or less arguments
— $a0, $al, $a2, $a3 are used for arguments

e ... but some procedures have more

— we don't want to use up all theregisters
— SO We use memory to store the rest

8-Oct-2001 CSE 410 - Procedures

The Stack

e Stack pointer ($p) pointsto the “top” value
on the stack (ie, the lowest address in use)

e Thereareno “push” or “pop” Instructions
— we adjust the stack pointer directly

 stack grows downward towards zero
— subu $sp, $sp, xx : Mmakeroom for more data
— addu $sp, $sp, xx . release space on the stack
— note that both subu and addu become addi u

8-Oct-2001 CSE 410 - Procedures 10

Dynamic storage on the stack

jal main

12($sp)
8($sp)
4($sp)
O($sp)

$sp [Ox7fffedfs

8-Oct-2001

mai n:

Ox7fffeel4

20($sp)

Ox7fffeel0

16($sp)

Ox7fffedfc

12($sp)

Ox7fffedf8

8($sp)

Ox7fffedf4d

4($sp)

Ox7fffedfO

Ox7fffedec

Ox7fffede8

Ox7fffeded

towards O

v

$sp
CSE 410 - Procedures

E O($sp)

Ox7fffedfO

11

L ayout of stack frame

$sp (on entry) —> |

argunment build area
(i f needed)

pr ocA:

subu $sp, $sp, xx i

saved registers
(i f needed)

8-Oct-2001

$sp (after subu) —> |

| ocal vari abl es
(if needed)

argunment build area
(i f needed)

<«— stack frame ——»

towards O

v

CSE 410 - Procedures

12

Argument build area

e Some calling conventions require that caller
reserve stack space for al arguments

— 16 bytes (4 words) left empty to mirror $ao- $a3

e Other calling conventions require that caller

reserve stack space only for arguments that
donotfitin $a0 - $a3

— so argument build areais only present if some
argumentsdidn’t fit in 4 registers

8-Oct-2001 CSE 410 - Procedures 13

Agreement

» A procedure and all of the programs that
call It must agree on the calling convention

e Thisisonereason why changing the calling
convention for system librariesis abig deal

e Wewill use

— caller reserves stack space for all arguments
— 16 bytes (4 words) left empty to mirror $ao- $a3

8-Oct-2001 CSE 410 - Procedures 14

2. Transfer to procedure

12($sp)
8($sp)
4($sp)
O($sp)

$sp [OX7Fff

edf 8

8-Oct-2001

mai n:

subu $sp, $sp, 8

Ox7fffeel4

20($sp)

Ox7fffeel0

16($sp)

Ox7fffedfc

12($sp)

Ox7fffedf8

8($sp)

Ox7fffedf4d

4($sp)

Ox7fffedfO

Ox7fffedec

Ox7fffede8

Ox7fffeded

towards O

v

$sp
CSE 410 - Procedures

E O($sp)

Ox7fffedfO

15

Jump and link

e Jump

— can take you anywhere within the currently
active 256 MB segment

e Link
— store return address in $ra
— note: this overwrites current value of $ra

8-Oct-2001 CSE 410 - Procedures

16

3. Acqguire storage resources

$sp (on entry) —> |

argunment build area
(i f needed)

saved registers
(i f needed)

| ocal vari abl es
(if needed)

8-Oct-2001

$sp (after subu) —> |

argument build area
(i f needed)

<«— stack frame ——»

towards O

v

CSE 410 - Procedures

17

3a. Saved registers

* Thereisonly one set of registers

— If called procedure unexpectedly overwrites
them, caller will be surprised and distressed

e Another agreement

— cdlled procedure can change $a0-%$a3, $v0-$v1,
$t0-$t9 without restoring origina values

— called procedure must save and restore value of
any other register it wantsto use

8-Oct-2001 CSE 410 - Procedures 18

Register numbers and names

number name usage
0 zero always returns 0
1 at reserved for use as assembler temporary
2-3 v0, vl values returned by procedures
4-7 a0- a3 first few procedure arguments
8-15, 24, 25 t0-t9 temps - can use without saving
16- 23 s0-s7 temps - must save before using
26, 27 kO, k1l reserved for kernel use - may change at any time
28 ap global pointer
29 sp stack pointer
30 fp or s8 frame pointer
31 ra return address from procedure

8-Oct-2001

CSE 410 - Procedures 19

3b. Local variables

e |f the called procedure needs to store values
In memory while it isworking, space must
be reserved on the stack for them

* Debugging note

— compiler can often optimize so that all variables
fit In registers and are never stored in memory

— S0 amemory dump may not contain all values
— use switches to turn off optimization (but ...)

8-Oct-2001 CSE 410 - Procedures 20

3c. Argument build area

e Our convention is
— caller reserves stack space for all arguments
— 16 bytes (4 words) left empty to mirror $ao- $a3
e |f your procedure does more than one call to
other procedures, then ...

— the argument build area must be large enough
for the largest set of arguments

8-Oct-2001 CSE 410 - Procedures 21

Using the stack pointer

e Adjust it once on entry, once on exit

— Initial adjustment should include all the space
you will need in this procedure

 Remember that aword is 4 bytes
— S0 expect to see references like 8($sp), 20($sp)

« Keep stack pointer double word aligned
— adjust by multiples of 8

8-Oct-2001 CSE 410 - Procedures 22

4. Do the desired function

* You have saved the values of the registers
that must be preserved across the call

e Theargumentsarein $a0 - $a3 or on the
stack

* The stack pointer points to the end of your
stack frame

e Let‘errip

8-Oct-2001 CSE 410 - Procedures

23

5. Makeresult avallableto caller

* Registers $v0 and $v1 are available for this
e Most procedures put a 32-bit value in $v0

e Returning the address of a variable?
— be very careful!

— your portion of the stack isinvalid as soon as
you return

— the object must be allocated in ancestor’ s part
of stack or globally allocated

8-Oct-2001 CSE 410 - Procedures 24

6. Return storage resources

$sp (after addu) —> |

argunent build area
(i f needed)

saved registers

jr

$ra

1 (i f needed)

| ocal vari abl es
1 (i f needed)

$sp (while executing) —» |

8-Oct-2001

argunent build area
1 (i f needed)

<«— stack frame —»

towards O

v

CSE 410 - Procedures

25

/. Return to point of call

 Jump through register
e The address of the instruction following the

jump and link was put in $ra when we were
called (the “link” in jump and link)

* We have carefully preserved $rawhile the
procedure was executing

e 0,“jr $ra” takesusright back to caller

8-Oct-2001 CSE 410 - Procedures 26

CSE 410 Calling Conventions

e Argument build area
— caller reserves stack space for all arguments
— 16 bytes (4 words) left empty to mirror $ao- $a3
 Called procedure adjusts stack pointer once
on entry, once on exit, in units of 8 bytes
* Registers
— not required to save and restore t0-$t9, $a0-$a3

— must save and restore $s0-s8, $ra if changed
— function results returned in $vO, $v1

8-Oct-2001 CSE 410 - Procedures 27

