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Readings and References

• Reading
› Chapter 9, Operating System Concepts, Silberschatz, Galvin, and

Gagne

• Other References
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Program Memory Addresses
• Program addresses are fixed at the time the

source file is compiled and linked
• Small, simple systems can use program

addresses as the physical address in memory
• Modern systems usually much more complex

› program address space very large
› other programs running at the same time
› operating system is in memory too

3-Dec-01 CSE 410 - Memory Management 4

Direct Physical Addressing
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Physical Addresses
• Address generated by the program is the same as the

address of the actual memory location
• Simple approach, but lots of problems

› Only one process can easily be in memory at a time
› There is no way to protect the memory that the process

isn't supposed to change (ie, the OS or other processes)
› A process can only use as much memory as is physically

in the computer
› A process occupies all the memory in its address space,

even if most of that space is never used
• 2 GB for the program and 2 GB for the system kernel
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Memory Mapping
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Virtual Addresses

• The program addresses are now considered
to be “virtual addresses”

• The memory management unit (MMU)
translates the program addresses to the real
physical addresses of locations in memory

• This is another of the many interface layers
that let us work with abstractions, instead
of all details at all levels
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Physical Memory Layout

• Contiguous Allocation
› Each process gets a single range of addresses
› Single-partition allocation

• one process resident at a time

› Multiple-partition allocation
• multiple processes resident at a time

• Noncontiguous allocation
› Paging, segmentation, or a combination
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Uniprogramming without Protection

• Application always runs
at the same place in
physical memory

• Process can access all
memory even OS
› program bug crashes the

machine
• MS-DOS

OS

Edit

unused

0x0000

0xFFFF
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Solitaire

Multiprogramming without Protection

• When a program loaded
the linker-loader
translates a programs
memory accesses (loads,
stores, jumps) to where
it will actually be
running in memory

• Still no protection
• Once was very common
• Windows 3.1 OS

Word

unused

0x0000

0xFFFF

0x7000
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Multiprogramming with Protection

• Restrict what a program can do by restricting what
it can touch

• User process is restricted to its own memory space
› can't crash OS
› can't crash other process

• How?
› All problems can be solved with another level of

indirection
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Simple Translation: Base/Bounds

• Each process has a base
register
› added to every memory

reference
• Each process has a

bounds register
› no memory reference

allowed beyond here

Word

Solitaire

OS

base reg
=0x200000

base reg
=0x600000

bounds reg
=0x500000

bounds reg
=0x700000
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Base/Bounds

• Word references 0x004FF00 - valid
• Solitaire references 0x1100C0 - error

Virtual
Address
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>
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register

Bounds
register

Physical
Address

ERROR!yes

Word

Solitaire

OS

base reg
=0x200000

base reg
=0x600000

bounds reg
=0x500000

bounds reg
=0x700000
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Fragmentation
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compaction

• Over time unused memory is spread out in small pieces
› external fragmentation

• Rearrange memory to make room for the next program
› compaction = lots of copying (expensive)
› change base/bounds registers for moved programs
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Base/bounds Evaluation
• Advantages of base/bounds

› process can't crash OS or other processes
› can move programs around and change base register
› can change program memory allocation by changing

bounds register
• Problems with base/bounds

› external fragmentation
› can't easily share memory between processes
› programs are limited to amount of physical memory
› doesn’t improve support for sparse address spaces

Paging
• Divide a process's virtual

address space into fixed-
size chunks (called pages)

• Divide physical memory
into pages of the same size

• Any virtual page can be
located at any physical
page

• Translation box converts
from virtual pages to
physical pages
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Paging and Fragmentation

• No external fragmentation because all
pages are the same size
› don’t have to rearrange pages

• Sometimes there is internal fragmentation
because a process doesn’t use a whole page
› some space wasted at the end of a page
› better than external fragmentation
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Page Tables

Page Table
Virtual

Page #

Physical

page #

virtual
address

VPN

Offset

physical
address

PPN

Offset

• A page table maps virtual page numbers to
physical page numbers

• Lots of different types of page tables
› arrays, lists, hashes



Flat Page Table

• A flat page table
uses the VPN to
index into an
array

• What's the
problem? (Hint:
how many entries
are in the table?)
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Flat Page Table Evaluation
• Very simple to implement
• Don't work well for sparse address spaces

› code starts at 0x00400000, stack starts at 0x7FFFFFFF
• With 4K pages, this requires 1M entries per page

table
› must be kept in main memory (can't be put on disk)

• 64-bit addresses are a nightmare (4 TB)
• Addressing page tables in kernel virtual memory

reduces the amount of physical memory used
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Multi-level Page Tables
• Use multiple levels of page tables

› each page table entry points to another page
table

› the last page table contains the physical page
numbers (PPN)

• The VPN is divided into
› Index into level 1 page
› Index into level 2 page

…

Multi-level Page Tables
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Multi-Level Evaluation

• Only allocate as many page tables as we need--
works with the sparse address spaces

• Only the top page table must be in pinned in
physical memory

• Each page table usually fills exactly 1 page so it
can be easily moved to/from disk

• Requires multiple physical memory references for
each virtual memory reference

Inverted Page Tables
• Inverted page tables

hash the VPN to get
the PPN

• Requires O(1) lookup
• Storage is proportional

to number of physical
pages being used not
the size of the address
space

Hash

Table

VPN Offset

Inverted Page Table Memory


