
Memory Management

CSE 410 - Computer Systems
December 3, 2001

3-Dec-01 CSE 410 - Memory Management 2

Readings and References

• Reading
› Chapter 9, Operating System Concepts, Silberschatz, Galvin, and

Gagne

• Other References

3-Dec-01 CSE 410 - Memory Management 3

Program Memory Addresses
• Program addresses are fixed at the time the

source file is compiled and linked
• Small, simple systems can use program

addresses as the physical address in memory
• Modern systems usually much more complex

› program address space very large
› other programs running at the same time
› operating system is in memory too

3-Dec-01 CSE 410 - Memory Management 4

Direct Physical Addressing

heap
program

stack
physical

memory

program
addresses

physical
addresses

3-Dec-01 CSE 410 - Memory Management 5

Physical Addresses
• Address generated by the program is the same as the

address of the actual memory location
• Simple approach, but lots of problems

› Only one process can easily be in memory at a time
› There is no way to protect the memory that the process

isn't supposed to change (ie, the OS or other processes)
› A process can only use as much memory as is physically

in the computer
› A process occupies all the memory in its address space,

even if most of that space is never used
• 2 GB for the program and 2 GB for the system kernel

3-Dec-01 CSE 410 - Memory Management 6

Memory Mapping

heap
program

stack

physical

memory

heap
program

stack

heap
program

stack

program
addresses

physical
addresses

memory
mapping

disk



3-Dec-01 CSE 410 - Memory Management 7

Virtual Addresses

• The program addresses are now considered
to be “virtual addresses”

• The memory management unit (MMU)
translates the program addresses to the real
physical addresses of locations in memory

• This is another of the many interface layers
that let us work with abstractions, instead
of all details at all levels

3-Dec-01 CSE 410 - Memory Management 8

Physical Memory Layout

• Contiguous Allocation
› Each process gets a single range of addresses
› Single-partition allocation

• one process resident at a time

› Multiple-partition allocation
• multiple processes resident at a time

• Noncontiguous allocation
› Paging, segmentation, or a combination

3-Dec-01 CSE 410 - Memory Management 9

Uniprogramming without Protection

• Application always runs
at the same place in
physical memory

• Process can access all
memory even OS
› program bug crashes the

machine
• MS-DOS

OS

Edit

unused

0x0000

0xFFFF
3-Dec-01 CSE 410 - Memory Management 10

Solitaire

Multiprogramming without Protection

• When a program loaded
the linker-loader
translates a programs
memory accesses (loads,
stores, jumps) to where
it will actually be
running in memory

• Still no protection
• Once was very common
• Windows 3.1 OS

Word

unused

0x0000

0xFFFF

0x7000

3-Dec-01 CSE 410 - Memory Management 11

Multiprogramming with Protection

• Restrict what a program can do by restricting what
it can touch

• User process is restricted to its own memory space
› can't crash OS
› can't crash other process

• How?
› All problems can be solved with another level of

indirection

3-Dec-01 CSE 410 - Memory Management 12

Simple Translation: Base/Bounds

• Each process has a base
register
› added to every memory

reference
• Each process has a

bounds register
› no memory reference

allowed beyond here

Word

Solitaire

OS

base reg
=0x200000

base reg
=0x600000

bounds reg
=0x500000

bounds reg
=0x700000



3-Dec-01 CSE 410 - Memory Management 13

Base/Bounds

• Word references 0x004FF00 - valid
• Solitaire references 0x1100C0 - error

Virtual
Address

+

>

Base
register

Bounds
register

Physical
Address

ERROR!yes

Word

Solitaire

OS

base reg
=0x200000

base reg
=0x600000

bounds reg
=0x500000

bounds reg
=0x700000

3-Dec-01 CSE 410 - Memory Management 14

Fragmentation

OS

P1

P2

P3

OS

P1

P3

OS

P1

P3

P4

OS

P3

P4

OS

P3

P4

P5

OS

P1

OS

P1

P2

OS OS

P3

P4

P5

P6

compaction

• Over time unused memory is spread out in small pieces
› external fragmentation

• Rearrange memory to make room for the next program
› compaction = lots of copying (expensive)
› change base/bounds registers for moved programs

3-Dec-01 CSE 410 - Memory Management 15

Base/bounds Evaluation
• Advantages of base/bounds

› process can't crash OS or other processes
› can move programs around and change base register
› can change program memory allocation by changing

bounds register
• Problems with base/bounds

› external fragmentation
› can't easily share memory between processes
› programs are limited to amount of physical memory
› doesn’t improve support for sparse address spaces

Paging
• Divide a process's virtual

address space into fixed-
size chunks (called pages)

• Divide physical memory
into pages of the same size

• Any virtual page can be
located at any physical
page

• Translation box converts
from virtual pages to
physical pages

0
1
2
3
4
5

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Translation

Virtual
Page #

Physical
Page #

0x0000

0x6000

0x0000

0x4000

0x0000

0xE000

3-Dec-01 CSE 410 - Memory Management 17

Paging and Fragmentation

• No external fragmentation because all
pages are the same size
› don’t have to rearrange pages

• Sometimes there is internal fragmentation
because a process doesn’t use a whole page
› some space wasted at the end of a page
› better than external fragmentation

3-Dec-01 CSE 410 - Memory Management 18

Page Tables

Page Table
Virtual

Page #

Physical

page #

virtual
address

VPN

Offset

physical
address

PPN

Offset

• A page table maps virtual page numbers to
physical page numbers

• Lots of different types of page tables
› arrays, lists, hashes



Flat Page Table

• A flat page table
uses the VPN to
index into an
array

• What's the
problem? (Hint:
how many entries
are in the table?)

VPN

PPN

Page Table
5
6
2
13
10
9

0
1
2
3
4
5
6
7
8
9
10
11
12
13

0
1
2
3
4
5

VPN Offset

4 100

Memory

3-Dec-01 CSE 410 - Memory Management 20

Flat Page Table Evaluation
• Very simple to implement
• Don't work well for sparse address spaces

› code starts at 0x00400000, stack starts at 0x7FFFFFFF
• With 4K pages, this requires 1M entries per page

table
› must be kept in main memory (can't be put on disk)

• 64-bit addresses are a nightmare (4 TB)
• Addressing page tables in kernel virtual memory

reduces the amount of physical memory used

3-Dec-01 CSE 410 - Memory Management 21

Multi-level Page Tables
• Use multiple levels of page tables

› each page table entry points to another page
table

› the last page table contains the physical page
numbers (PPN)

• The VPN is divided into
› Index into level 1 page
› Index into level 2 page

…

Multi-level Page Tables

0
1
2
3
4
5
6
7
8
9
10
11
12
13

L1 Page Table

NO

VPN Offset

3 1002

0
1
2
3

MemoryL2Page Tables

3-Dec-01 CSE 410 - Memory Management 23

Multi-Level Evaluation

• Only allocate as many page tables as we need--
works with the sparse address spaces

• Only the top page table must be in pinned in
physical memory

• Each page table usually fills exactly 1 page so it
can be easily moved to/from disk

• Requires multiple physical memory references for
each virtual memory reference

Inverted Page Tables
• Inverted page tables

hash the VPN to get
the PPN

• Requires O(1) lookup
• Storage is proportional

to number of physical
pages being used not
the size of the address
space

Hash

Table

VPN Offset

Inverted Page Table Memory


