Introduction

CSE 410, Spring 2004 Computer Systems

http://www.cs.washington.edu/education/courses/410/04sp/

29-Mar-2004

cse410-01-introduction © 2004 University of Washington

Reading and References

- Reading
 - » Chapter 1, Computer Organization and Design, Patterson and Hennessy
- Other References
 - » The Rope and Pulley Wonder, in *The Tinkertoy Computer, A. K. Dewdney*

Administrative

- Instructor:
 - » Doug Johnson
 - » djohnson@cs.washington.edu
- <u>All</u> class info is on the web site
 - » http://www.cs.washington.edu/410
 - » also known as
 - http://www.cs.washington.edu/education/courses/cse410/04sp/

Class Overview

- Provide an introduction to the inner workings of computer systems
- Levels of abstraction
 - » bits, bytes, assembly language
 - » operating system concepts
 - » higher level languages C, C++, Java, ...
 - » application programs

Goal

- You will understand
 - » what is actually happening when a computer system is running application programs
- So that you will be able to
 - » make good design choices as a developer, project manager, or system customer
 - » calibrate your hype-o-meter with facts

The structure of this class

- The hardware / software interface
 - » the elements of a computer system
 - » what parts are visible to the software
 - » instruction set architecture (ISA)
- Operating systems
 - » services an OS performs for an application
 - » design of various OS components

Elements of a computer system

- Start with a point of view
 - » purchase a CD on the Web
 - » get class schedule from MyUW
 - » write a resume using Word
 - » write a Java program to do image processing
 - » write a C program to read real time data
 - » write assembly language for matrix operations
 - » write microcode for instruction emulation

"Top Level" elements

- At any level of abstraction, there are
 - » elements at that level
 - » the building blocks for those elements
- Rope analogy in the book
 - » a cable: three hawsers twisted together
 - » a hawser: three strands of many yarns
 - » down to the molecular level and beyond

Purchase a CD on the Web

- the "top level" system includes
 - » your browser, your desktop computer
 - » connection to the internet (ISP)
 - » server http://www.amazon.com/
 - » server application code
 - method="POST"
 - action="/exec/obidos/handle-buy-box=B00005NFZB/..."
 - ..

Write a resume using Word

- the "top level" system includes
 - » winword.exe the application program
 - » Contemporary Resume.dot document template
 - » resume.doc the file containing the text
 - » Windows Explorer file manager
 - » network file and printer sharing

assembly language for matrix operations

- the "top level" system includes
 - » programmer's editor (eg, Context)
 - » assembler convert source to machine language
 - » linker, loader build and run executable
 - » Instruction Set Architecture (ISA) that you are writing the code for
 - defines the programmer-visible face of the CPU
 - in this class, we will be writing for MIPS 1 ISA

Layers of abstraction

- Abstraction
 - » isolates a layer from changes in the layer below
 - » improves developer productivity by reducing detail needed to accomplish a task
 - » helps define a single <u>architecture</u> that can be implemented with more than one <u>organization</u>

Architecture and Organization

- Architecture
 - » defines elements and interfaces between layers
 - » ISA: instructions, registers, addressing
- Organization
 - » components and connections
 - » how instructions are implemented in hardware
 - » many different organizations can implement a single architecture

Computer Architecture

- Specification of how to program a specific computer family
 - » what instructions are available?
 - » how are the instructions formatted into bits?
 - » how many registers and what is their function?
 - » how is memory addressed?
- The MIPS 1 architecture is the basis for the first half of this course

Architecture Families

- IBM 360, 370, ...
- PowerPC 601, 603, ...
- DEC PDP-11
- Intel x86 286, 386, 486, Pentium, ...
- Motorola 680x0
- MIPS R2000, R3000, R4000, R5000, ...

Computer Organization

- Processor
 - » datapath (functional units) manipulate the bits
 - » control controls the manipulation
- Memory
 - » cache memory smaller, higher speed
 - » main memory larger, slower speed
- Input / Output
 - » interface to the rest of the world

Organizations and Architectures

- Architecture is another abstraction layer
- One architecture can be implemented with many organizations
- One organization can support multiple architectures
- Different manufacturing technologies
 - » TTL, ECL, PMOS, NMOS, CMOS
 - » ropes and pulleys see Dewdney reference

Many possible implementations

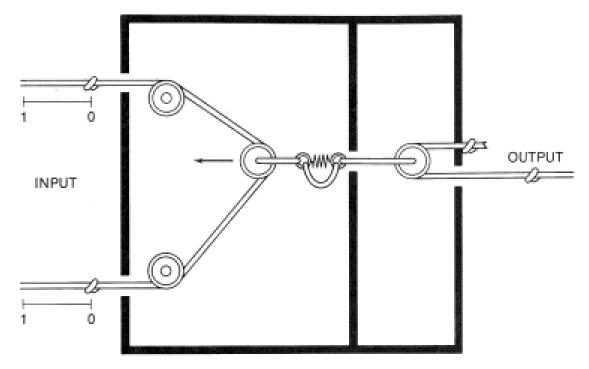
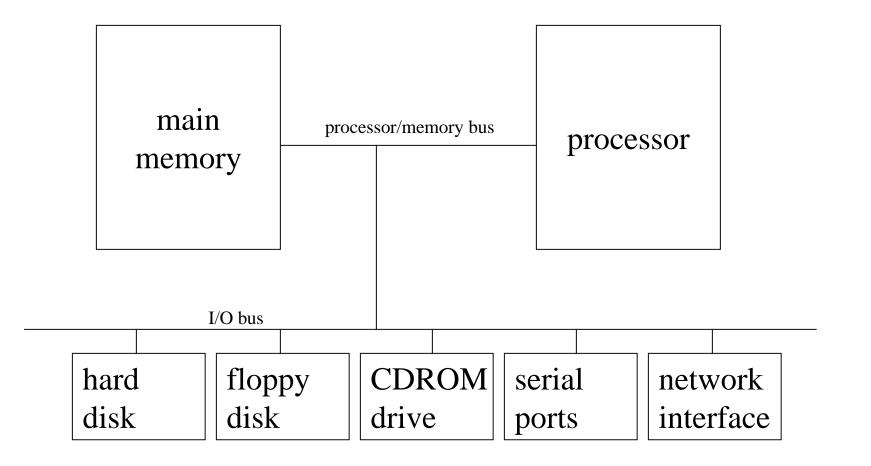



Figure 2.4 The Apraphulian AND gate.

A typical organization

Change Organization or Architecture?

- Theory
 - » Organization changes provide incremental changes in speed and cost for same software
 - Architecture changes enable breakthrough changes in speed and cost for new software
- Real life
 - » incremental changes are very rapid
 - » breakthrough changes are very costly

A quick hardware tour

- System board
 - » CPU, memory, I/O bus
- Hard disk
 - » 3600+ RPM, 8ms latency, 3-15 ms seek
- Monitor
 - » CRT, LCD
- Mouse, keyboard
 » embedded processors