Number Formats

CSE 410, Spring 2004
Computer Systems
http://www.cs.washington.edu/education/courses/410/04sp/

Signed Numbers

- We have already talked about unsigned binary numbers
» each bit position represents a power of 2
" range of values is 0 to $2^{\text {n }}-1$
- How can we indicate negative values?
» two states: positive or negative
» a binary bit indicates one of two states: 0 or 1
\Rightarrow use one bit for the sign bit

Reading and References

- Sections 4.1 through 4.4, 4.8 through page 280, 4.11, 4.12, Computer Organization and Design, Patterson and Hennessy

Where is the sign bit?

- Could use an additional bit to indicate sign
» each value would require 33 bits
" would really foul up the hardware design
- Could use any bit in the 32-bit word
» any bit but the left-most (high order) would complicate the hardware tremendously
- The high order bit (left-most) is the sign bit » remaining bits indicate the value

- Bit 31 is the sign bit
» 0 for positive numbers, 1 for negative numbers
» aka most significant bit (msb), high order bit

Two's complement notation

- Note special arrangement of negative values
- One zero value, one extra negative value
- The representation is exactly what you get by doing a subtraction

Decimal	Binary
-7	0001
----	0111
-6	---
	1010

Why "two's" complement?

- In an n-bit word, negative x is represented by the value of 2^{n}-x
- 4-bit example
$2^{4}=16$. What is the representation of -6 ?

Decimal	Binary
16	10000
$-\quad 6$	$-\quad 0110$

10	1010

Negating a number

- Given x, how do we represent negative x ?

```
    negative(x) = 2n-x
and x+complement (x) = 2n
so negative(x) = 2n}-\mathbf{x}=\mathrm{ complement(x)+1
```

- The easy shortcut
» write down the value in binary
» complement all the bits
» add 1

Signed and Unsigned Compares

Hex	Bin	Unsigned Decimal	Signed Decimal	add	\$t0, \$zero,-1
F	1111	15	-1		
E	1110	14	-2	1 i	\$t1, 7
D	1101	13	-3		
C	1100	12	-4	slt	\$t2, \$t0, \$t1 \# t2 = 1
B	1011	11	-5		
A	1010	10	-6	sltu	\$t3, \$t0, \$t1 \# t3 = 0
9	1001	9	-7		
8	1000	8	-8		
7	0111	7	7		
6	0110	6	6		
5	0101	5	5		Note: using 4-bit signed
4	0100	4	4		numbers in this example.
3	0011	3	3		The same relationships exist
2	0010	2	2		with 32-bit signed values.
$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	0001 0000	1	1		

Example: the negation shortcut

```
decimal 6 = 0110 = +6
complement = 1001
            add 1 = 1010= -6
decimal -6 = 1010 = -6
complement = 0101
            add 1 = 0110 = +6
```

- Unsigned: lbu \$reg, a (\$reg)
» the byte is 0 -extended into the register

$$
\begin{array}{|l|l|l|l|l|}
\hline 00000000 & 0000 & 0000 & 0000 & 0000
\end{array} \text { xxxx xxxx }
$$

- Signed: lb \$reg, a (\$reg)
» bit 7 is extended through bit 31

0000	0000	0000	0000	0000

$\left.\begin{array}{|l|l|l|l|l|l|}\hline 1111 & 1111 & 1111 & 1111 & 1111 & 1111\end{array}\right)$ xxx xxxx

Why Floating Point?

- The numbers we have talked about so far have all been integers in the range 0 to 4 B or -2 B to $+2 \mathrm{~B}$
- What about numbers outside that range?
" population of the planet: 6 billion+
- What about numbers that have a fractional part in addition to the integer part?
» $\pi=3.1415926535$...

A scale factor for each number

- This is the same as scientific notation
» $6 \times 10^{9}, 3.1415926535 \times 10^{0}$
- A floating point number contains two parts
" mantissa (or significand): the value
» exponent: the exponent of the scale factor
- Normalized form
» a non-zero single digit before the decimal point
- Assume that every numeric value in memory was scaled by a factor of 1000
$3000=>$ represents 3.000
$3010=>$ represents 3.010
- Problems
» one scale factor for all numbers?
" impossible to choose one "best" scale factor for all numbers that we might want to represent
- The computer only stores binary numbers
» So we use powers of 2 rather than 10
» Normalized numbers have a leading 1
- $6,000,000,000=6.0 \times 10^{9}$
» $1.3969838619_{10} \times 2^{32}$
- $\pi \cong 3.141592653589793238462643383$
» $1.57079632679489661923132169163975 \times 2^{1}$

Storage format: fixed width fields

- How big can the exponent be?
» what is the range it represents?
- How big can the mantissa be?
» what are the values it represents?
- We have to select a storage format and allocate specific fields to various purposes
» single precision: one 32-bit word
» double precision: two 32-bit words

Floating Point Storage

- Single Precision
» one word (32 bits)
- Double Precision
» two words (64 bits)
» the order of the words depends on endianness of the machine being used
- Defined by IEEE 754

IEEE 754 Standard

- Chaos in the 70s and 80s as each system designer chose new formats and rules
- IEEE 754 standard
» format of the fields
» rounding: up, down, towards 0 , nearest
" exceptional values: \pm infinity, NaN (not a number)
» action to take on exceptional values

Single Precision Format

Double Precision Format

14-Apr-2004

Double Precision Exponent Field

- Field range

» 11 bits: range $2^{11}=2048$ possible values

- Special values
» exponent $=2047 \Rightarrow$ value=special (inf, NaN)
» exponent $=0 \Rightarrow$ value $=0$

Double Precision Mantissa Fields

- Sign bit
" 1 bit sign for the value
- Mantissa
» 52 bits for the value
» by definition, the leading digit is always a 1
» so we don't need to actually store it
» and we actually have 53 bits of information

Biased Notation

- Need exponent range - negative and positive
- If positive exponents are bigger numbers than the negative exponents, then floating point numbers can be sorted as integers
- Exponent is stored as $(\mathrm{E}+1023)$
» most positive exponent is +1023 (stored as 2046)
» most negative exponent is -1022 (stored as 1)
" this is not two's complement notation
- 6174015488
$=6.174015488 \times 10^{9}=1.4375_{10} \times 2^{32}$
- Exponent
$=32+1023=1055=41 \mathrm{~F}_{16}$
- Mantissa
$=.4375_{10}=.0111_{2}=7_{16}$

Roundoff Error

- Adding a very small floating point number to a very large floating point number may not have any effect
» any one number has only 53 significant bits
- Adding a number with a fractional part to another number over and over will probably never yield an exactly integer result
» so don't use floating point loop indexes

14-Apr-2004 cse410-09-formats © 2004 University of Washington

Loss of precision

$1101000000000000.0000000000000000=1.101_{2} \times 2^{15}$
$0000000000000000.0000000000001101=1.101_{2} \times 2^{-13}$

- These are not unusual numbers

53248 and 0.0001983642578125

- Very few bits of mantissa required
- But their sum requires a mantissa with at least 32 bits or there will lost significant bits

