	Reading and References			
Input / Output	 Reading Section 8.1-8.5, Computer Organization and Design, Patterson and Hennessy 			
CSE 410, Spring 2004 Computer Systems				
http://www.cs.washington.edu/education/courses/410/04sp/				
pr-2004 cse410-15-input-output © 2004 University of Washington 1	30-Apr-2004 cse410-15-input-output © 2004 University of Washington 2			
Why Input and Output?	A typical organization			
Why Input and Output? Everything we have done so far is based on moving data / instructions between main memory and the CPU	main processor/memory bus			
Everything we have done so far is based on moving data / instructions between main				

Types of I/O devices

• Behavior

» input only (keyboard, mouse, sensor) » output only (monitor, LED display, actuator) » input and output (network, disk, tape, CD-RW)

• Partner

» human or machine

• Data rate

30-Apr-2004

» negligible to KiloBytes/Second to MegaBytes/S

cse410-15-input-output © 2004 University of Washington

Three Characteristic Devices

• Mouse

» input only; human; .01-.02 KB/s

- Magnetic disks » input and output; machine; 100-10,000 KB/s
- Networks

30-Apr-2004

» input and output; machine; 500-6000 KB/s

Detecting Mouse Motion

- Mechanical
 - » Two perpendicular wheels on the inside connected to potentiometers
- Optical
 - » LED and a photodetector on the bottom
- Optomechanical
 - » The wheels have slots; an LED shines through them
- Lots of others
 - » embedded microprocessor in the mouse

Mouse Interfaces

cse410-15-input-output © 2004 University of Washington

- Pointing device must provide
 - » Status of each button
 - » Position in X and Y
- Software must interpret the interface input
 - » Double clicks
 - » Limits to motion, speed

7

5

6

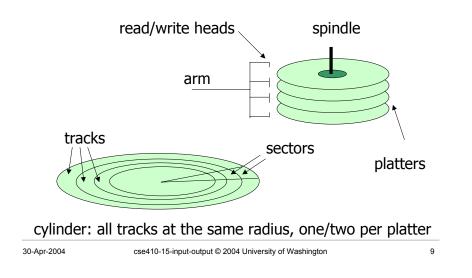
Screen

position

position

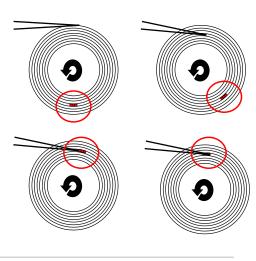
information

position


measurement

Device

driver


Mouse

Anatomy of a Magnetic Disk

Accessing Data from a Disk

- First, the disk arm moves over the right cylinder: *seek time*
- Next, wait for the data to rotate under the disk arm: *rotational delay*, (on average half the time for one revolution)
- Finally, read the data from the disk: *transfer time*
- At this point, the data is in the *disk controller* and can be transferred to memory

30-Apr-2004

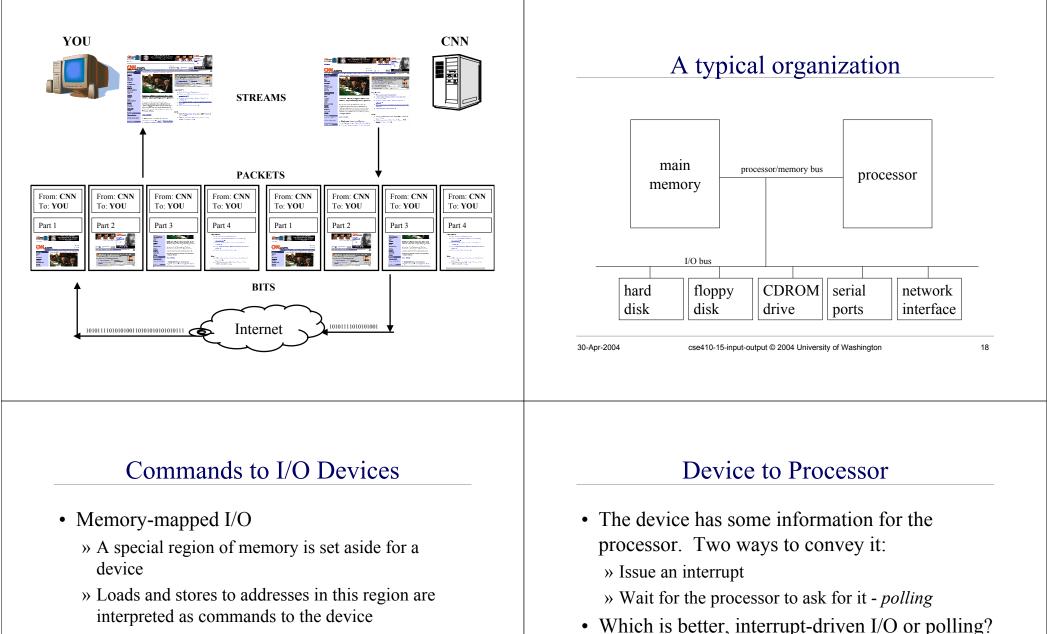
cse410-15-input-output © 2004 University of Washington

10

Disk Interface

 Only two data transfer operations on a disk:
 » read block, write block

• Unknown to the disk:


Hidden behind the interface:
 » block ↔ sector mappings

» contents of the blocks/sectors

File system interface Blocks Disk interface Sectors

- Disk Specifications
- Consider the disk in my (old) laptop
 » 5GB IBM DJSA-205 (from device manager)
- Specifications (from IBM data sheet) » rotation speed 4200 RPM
 - rotational delay = 60 * 1/4200 * 0.5 = 7.1 ms
 - » seek times
 - avg: 12.0 ms, 1 track: 2.5 ms, full stroke: 23.0 ms
 - » layout
 - heads: 1, cylinders: 22784 (user), 10336 (actual)
 - sectors per track: 293-560

Networks Data Transfer Specifications • The device that lets a system connect to a • Data buffer network: network interface card » 512 Kbytes on board the disk • Listens for data on the network important to • Media Transfer rate this system » 108.8 to 202.9 Mbits / sec • Bundles the bits into packets and signals the • Interface Transfer rate OS when a packet is complete » Ultra-DMA mode 4: 66.6 Mbytes/sec • Also takes packets from OS and sends them as » PIO mode 4: 16.6 Mbytes/sec bits on the wire 13 30-Apr-2004 30-Apr-2004 cse410-15-input-output © 2004 University of Washington cse410-15-input-output © 2004 University of Washington 14 Networking Interfaces Network Example **CNN** YOU • OS puts extra packets in to define where stream begins and ends Streams GET http://cnn.com/index.html GET http://cnn.com/index.html STREAMS • NIC puts extra bits in to Networking From: YOU To: CNN From: YOU To: CNN protocols define where packets PACKETS Packets GET http://cnn.com/index.html GET http://cnn.com/index.html begin and end NIC interface BITS Bits 10101111010101001 Internet 1010111101010100110101010101010101 15 30-Apr-2004 cse410-15-input-output © 2004 University of Washington 30-Apr-2004 cse410-15-input-output © 2004 University of Washington 16

- » Provides easy access control via the memory system
- Special I/O instructions

30-Apr-2004

19

30-Apr-2004

Depends on:

» time sensitivity of data

» whether data is expected

Device to Memory

- *Direct Memory Access (DMA)* allows devices and memory to communicate without involvement of processor
- Processor sets up the transaction
- Device and memory transfer the data
- Device interrupts processor to signal completion
- The processor gets a lot of other work done while transfer is happening

cse410-15-input-output © 2004 University of Washington

Performance Issues in I/O

- Processors double in speed every 18 months
- Networks double in speed more slowly, perhaps every 3 years
- Disks improve more slowly, because they are limited by mechanical factors
 - » however, bit density has gone up rapidly

The I/O Bottleneck

• System A

30-Apr-2004

- » processor speed = 100 MHz (clock cycle 10 ns)
- » disk transfer takes 10 ms
- » How many clock cycles elapse while disk transfer takes place?
- System B
 - » processor speed = 1 GHz (clock cycle 1 ns)
 - » disk transfer still takes 10 ms
 - » How many clock cycles now?

23

21

I/O Bus Constraints

cse410-15-input-output © 2004 University of Washington

- Two primary design points that must be met
- High speed

30-Apr-2004

- » processor / memory, bulk devices / memory
- Flexibility
 - » many types of I/O devices with widely varying characteristics
 - » characteristics of future devices are unknown at design time

Designs

- The speed and flexibility constraints lead to designs which are
 - » designed for speed
 - processor-memory bus
 - » designed for flexibility
 - I/O bus
 - » designed for both
 - backplane bus

Speed? Synchronous Bus

- For highest speed, all devices are designed to work together at the same high rate
- Synchronous buses have a clock signal that all devices on the bus are aware of
- Protocol for accessing the bus is relatively simple
 - » control signals at specified clock cycles» data at specified clock cycles

30-Apr-2004	cse410-15-input-output © 2004 University of Washington	25	30-	-Apr-2004	cse410-15-input-output © 2004 University of Washington	26

Synchronous Issues

- Runs fast
- but
 - » all attached devices must be designed for this particular (probably proprietary) bus
 - » must be short so that signals can propagate across the whole bus
 - » fast today is slow tomorrow

Flexibility? Asynchronous Bus

- Devices access the bus by handshaking to determine who can go next
- No single clock
 - » transactions are defined by control signal transitions
- Can accommodate a wide variety of device speeds and device types

Asynchronous Issues

- Flexible
- but

30-Apr-2004

- » the handshake adds overhead to each transfer
- » special cases pollute the protocol as it is extended to provide higher speed capabilities
- » extreme network effect: once a bus is popular, it lives long past its expected lifetime because there are so many devices that use it

cse410-15-input-output © 2004 University of Washington

Bus Bandwidth

- Width of the bus
 - » number of data lines can be increased to transfer more bits of data in parallel
- Multiplexing
 - » data signals and control signals can be put on the same lines at different times to save hardware
 - » or separated to overlap handshake and data transfer
- Multi-word transfers

» block transfers move more data per handshake

cse410-15-input-output © 2004 University of Washington

30-Apr-2004

30

Controlling bus access

- With multiple devices on the bus, something must control access
- Bus Master
 - » device that is allowed to initiate transfers
- Single bus master
 - » simple, because no contention
 - » potential bottleneck, because one device is busy for every single transfer on the bus

Multiple Masters and Arbitration

- Let several devices act as bus masters
- Must decide who is in control for any particular transaction
- Arbitration
 - » daisy chain serial decision
 - » centralized parallel one decider
 - » distributed parallel many deciders
 - » distributed with collision detection

31