
5-May-2004 cse410-16-cisc © 2004 University of Washington 1

Complex Instruction Sets

CSE 410, Spring 2004
Computer Systems

http://www.cs.washington.edu/education/courses/410/04sp/

5-May-2004 cse410-16-cisc © 2004 University of Washington 2

Readings and References

• Reading 
» Sections 3.12 - 3.15, Computer Organization & Design, Patterson and 

Hennessy

• Other References
» VAX MACRO and Instruction Set Reference Manual (Compaq)

» PowerPC Assembly Language Reference (IBM)

5-May-2004 cse410-16-cisc © 2004 University of Washington 3

CISC and RISC

• Complex Instruction Set Computer
» VAX: about 325 instructions
» uses very powerful instructions to do the work of 

the program
• Reduced Instruction Set Computer

» MIPS: about 100 instructions
» use many simple instructions to do the same 

amount of work faster

5-May-2004 cse410-16-cisc © 2004 University of Washington 4

Digital Equipment VAX - 1977

• Advances in microcode technology made 
complex instructions possible

• Memory was expensive
» so small program size = good

• Compilers had a long way to go
» so ease of translation from high-level language 

to assembly = good



5-May-2004 cse410-16-cisc © 2004 University of Washington 5

VAX Instructions

• Stack manipulation
» pop, push registers

• Queue manipulation
» insert, remove entries at head or tail

• Cyclic Redundancy Check
• Character Strings

» Compare, Locate, Match, Move, Scan, Skip, Span
» Move Translated Until Character

5-May-2004 cse410-16-cisc © 2004 University of Washington 6

MOVTUC 
Move Translated Until Character

The source string specified by the source length and source 
address operands is translated. It replaces the destination string 
specified by the destination length and destination address 
operands. Translation is accomplished by using each byte of the 
source string as an index into a 256-byte table whose first 
entry address (entry number 0) is specified by the table address
operand. The byte selected replaces the byte of the destination 
string. Translation continues until a translated byte is equal to the 
escape byte, or until the source string or destination string is
exhausted. If translation is terminated because of escape, the 
condition code V-bit is set; otherwise, it is cleared.

5-May-2004 cse410-16-cisc © 2004 University of Washington 7

Impact on a pipeline?

“During the execution of the character string 
instructions, pending interrupt conditions are 
tested. If any conditions are found, the control 
block is updated, a first-part-done bit is set in the 
processor status longword (PSL), and the 
instruction is interrupted. After the interruption, 
the instruction resumes transparently.”

5-May-2004 cse410-16-cisc © 2004 University of Washington 8

Intel 80x86 - 1978 and on

• 8086 
» extension of the 8-bit 8080 microprocessor
» dedicated register usage requirements

• 80286, 80386
» segmented 32-bit address space
» general purpose registers

• 80486, Pentiums
» performance, parallelism



5-May-2004 cse410-16-cisc © 2004 University of Washington 9

Backward Compatible

• A key feature and a major problem is that the 
Intel architecture has maintained backward 
compatibility
» Good: old programs run on new CPUs
» Bad: new CPUs must implement the complex 

designs of the past
• Intel has repeatedly pushed the architecture 

beyond what was thought possible

5-May-2004 cse410-16-cisc © 2004 University of Washington 10

The RISC Reaction

• Complex instructions
» Take longer to execute
» Take more hardware to implement

• Idea: compose simple, fast instructions
» Less hardware is required
» Faster execution speed if done right

• PUSHR vs. sw + sw + sw

5-May-2004 cse410-16-cisc © 2004 University of Washington 11

Born to Pipeline - MIPS 1985

• Instructions all one length
» simplifies Instruction Fetch stage

• Regular format
» simplifies Instruction Decode

• Few memory operands, only registers
» only lw and sw instructions access memory

• Aligned memory operands
» only one memory access per operand

5-May-2004 cse410-16-cisc © 2004 University of Washington 12

PowerPC - 1993 and on

• Branch unit
» prefetch instructions and analyze
» substitute destination instruction for branch

• Superscalar
» multiple functional units operating in parallel

• Memory access
» unaligned load / store
» big-endian, little-endian



5-May-2004 cse410-16-cisc © 2004 University of Washington 13

Clever isn’t always Good

“While the PowerPC architecture provides both load 
and store multiple instructions for GPRs, it discourages 
their use because their implementation on some 
machines may not be optimal. In fact, use of the load 
and store multiple instructions on some future 
implementations may be significantly slower than the 
equivalent series of single word loads or stores.”

5-May-2004 cse410-16-cisc © 2004 University of Washington 14

int strlen(char *s)

int strlen(char *s) {

char *p = s;

while (*p != '\0') p++;

return p-s;

}

5-May-2004 cse410-16-cisc © 2004 University of Washington 15

strlen on a Pentium
Address Machine Code Assembly Code

00000 8b 4c 24 04 mov ecx, DWORD PTR _s$[esp-4]

00004 8b c1 mov eax, ecx

00006 80 39 00 cmp BYTE PTR [ecx], 0

00009 74 06 je SHORT $L36

$L35:

0000b 40 inc eax

0000c 80 38 00 cmp BYTE PTR [eax], 0

0000f 75 fa jne SHORT $L35

$L36:

00011 2b c1 sub eax, ecx

00013 c3 ret 0

5-May-2004 cse410-16-cisc © 2004 University of Washington 16

strlen on a PowerPC
Address Machine Code Assembly Code

00000000 93E1FFFC stw r31,-4(SP)

00000004 7C7F1B78 mr r31,r3

00000008 48000008 b *+8

0000000C 3BFF0001 addi r31,r31,1

00000010 889F0000 lbz r4,0(r31)

00000014 7C840774 extsb r4,r4

00000018 2C040000 cmpwi r4,0

0000001C 4082FFF0 bne *-16

00000020 7C63F850 sub r3,r31,r3

00000024 83E1FFFC lwz r31,-4(SP)

00000028 4E800020 blr



5-May-2004 cse410-16-cisc © 2004 University of Washington 17

strlen on a MIPS
Address Machine Code Assembly Code

00000000 80820000 lb $v0,0($a0)

00000004 00041821 move $v1,$a0

00000008 10400006 beqz $v0,done

0000000c 24630001 addu $v1,$v1,1

loop:

00000010 80620000 lb $v0,0($v1)

00000014 24630001 addu $v1,$v1,1

00000018 1440fffe bnez $v0,loop

0000001c 2463ffff subu $v1,$v1,1

done:

00000020 00641023 subu $v0,$v1,$a0

00000024 03e00008 j $ra


