
10-May-2004 cse410-19-process © 2004 University of Washington 1

Processes

CSE 410, Spring 2004
Computer Systems

http://www.cs.washington.edu/education/courses/410/04sp/

10-May-2004 cse410-19-process © 2004 University of Washington 2

Reading and References

• Reading
» Chapter 4 through 4.5.4, Operating System Concepts,

Silberschatz, Galvin, and Gagne

• Other References
» Inside Microsoft Windows 2000, Third Edition, Solomon and

Russinovich

10-May-2004 cse410-19-process © 2004 University of Washington 3

Example OS in operation

Hardware (CPU, devices)

Application Interface (API)

Hardware Abstraction Layer

File
Systems

Memory
Manager

Process
Manager

Network
Support

Device
Drivers

Interrupt
Handlers

Boot &
Init

AcrobatPhotoshopNavigator

O
pe

ra
tin

g
Sy

st
em

Portable

U
se

r A
pp

s

Acrobat

10-May-2004 cse410-19-process © 2004 University of Washington 4

Programs and Processes

• A program is passive
» a file on disk with code that can be run

• A process is active
» an instance of a program in execution
» also called job, task, sequential process

• There are always many processes running
• Some may be running the same program

» but they are still separate and independent
processes

10-May-2004 cse410-19-process © 2004 University of Washington 5

What are the parts of a process?

• code for the running program
• data for the running program

» heap, stack
• location of the next instruction (PC)
• current state of the general-purpose registers
• list of open resources

» files, network connections
• lots of OS management data

10-May-2004 cse410-19-process © 2004 University of Washington 6

Process State

• Each process has an execution state that
indicates what it is currently doing:
» ready: waiting to be assigned to the CPU
» running: executing instructions on the CPU
» waiting: waiting for an event, e.g., I/O

completion, so that it can be made ready
• As a program executes, the OS moves the

process from state to state

10-May-2004 cse410-19-process © 2004 University of Washington 7

Processes move from state to state as a result of
actions they perform (e.g., system calls), OS actions
(rescheduling) and external actions (interrupts)

new running

ready waiting

terminated

Process State Changing

10-May-2004 cse410-19-process © 2004 University of Washington 8

Process Data Structures

• At any time, there are many processes active in
a system

• The OS has data structures representing each
process
» primary structure is the Process Control Block

(PCB)
• PCB contains info about a process

» including pointers to other related data blocks

10-May-2004 cse410-19-process © 2004 University of Washington 9

PCBs and Hardware State

• When a process runs, its PC, SP, and registers, are
loaded on the CPU

• When the OS switches to a new process, it
» saves the current process’s register values to its PCB
» loads the next process’s register values from its PCB

• This is called a context switch. It occurs 100-1000
times per second
» why so often?
» why not more often?

10-May-2004 cse410-19-process © 2004 University of Washington 10

Context switch is pure overhead

• Switching processes can be expensive
» register reload
» OS data structures

• Lightweight context reduces cost of switch
» threads

• Special hardware reduces cost of switch
» larger register files with register windows
» remember “load multiple register” instruction?

10-May-2004 cse410-19-process © 2004 University of Washington 11

process state

process number

program counter

stack pointer

32 general-purpose registers

memory management info

username of owner

queue pointers for state queues

scheduling info (priority, etc.)

accounting info

Simple Process Control Block

10-May-2004 cse410-19-process © 2004 University of Washington 12

Simplified W2K Process Data

Process
environment

block

Thread
environment

block

Process
block

Win32 process block

Handle table

Thread
block

process address space

system address space

Copied fromInside Windows 2000

10-May-2004 cse410-19-process © 2004 University of Washington 13

Process State Queues

Ready Queue Header

Wait Queue Header

head ptr
tail ptr

head ptr
tail ptr

PCB TetrisPCB Word PCB MSVC

PCB Defrag PCB Telnet

Many wait
queues—one for
disk, one for user
input, etc.

10-May-2004 cse410-19-process © 2004 University of Washington 14

PCBs and State Queues

• PCBs are data structures in OS memory
• A PCB is created for a process when it starts

and put on the ready queue
• While the process is active, PCB is on one of

the state queues
• When the process is terminated, its PCB is

deallocated (after a little while)

10-May-2004 cse410-19-process © 2004 University of Washington 15

Getting control back
• How does the OS get control back from a

running process?
» The process could explicitly return control to

the OS (in many real-time systems)
» Generally, we can’t trust the process to do this

• OS sets a timer on the CPU (privileged
instruction) and starts a user process

• When the timer expires control passes to OS
» impact on “hard real-time” system?

10-May-2004 cse410-19-process © 2004 University of Washington 16

Scheduling a process

• Batch processes tend to be scheduled over a
long period by a job scheduler
» explicit dollar value on priority
» longer time in CPU once loaded and started

• Interactive or soft real time processes are
started as needed and compete for CPU
» dynamic priorities
» rapid context switching of many processes

10-May-2004 cse410-19-process © 2004 University of Washington 17

Creating a process

• The OS creates processes upon request
• The first few processes are all part of the

operating system itself
» services, sessions, spoolers, network tools, ...

• Further processes created as response to login,
user command, scheduled events
» winlogin, sshd, navigator, photoshop, ...

10-May-2004 cse410-19-process © 2004 University of Washington 18

create-process

• OS provides create-process system call
» parent process creates one or more children
» each child can create more children
» the result is a process tree

• Parent can wait or continue immediately
» create a process and block (synchronous)
» create a process and continue (asynchronous)

10-May-2004 cse410-19-process © 2004 University of Washington 19

“tlist -t” on my laptop

System Process (0)

System (8)

smss.exe (140)

csrss.exe (164)

winlogon.exe (160) NetDDE Agent

services.exe (212)

svchost.exe (392)

spoolsv.exe (420)

Avsynmgr.exe (476)

VsStat.exe (744) NAI_VS_STAT

Vshwin32.exe (760) VShieldWin_Class

Avconsol.exe (872)

svchost.exe (496)

HPConfig.exe (536) OleMainThreadWndName

regsvc.exe (580)

MSTask.exe (600) SYSTEM AGENT COM WINDOW

WinMgmt.exe (636)

mspmspsv.exe (724)

Mcshield.exe (556)

lsass.exe (224)

Explorer.EXE (1076) Program Manager

ESSD.exe (1132) ESS Daemon

s3hotkey.exe (1160) S3HotKey

S3trayhp.exe (1180) S3

SynTPLpr.exe (1196) Touchpad driver helper
SynTPEnh.exe (1228) Touchpad driver tray
motmon.exe (1220) motmon

mpbtn.exe (1256) hpisButton

CP32NBTN.EXE (1280) One-Touch

CDRomMnt.EXE (888) CD-Rom Monitor

KBOSDCtl.EXE (1116) Dritek OSD Window

CP32NKCC.EXE (1264) Dritek HotKey

OSA.EXE (1308) Reminder

AcroTray.exe (1316) AcrobatTrayIcon

CMD.EXE (984) Command Prompt - tlist -t

tlist.exe (1112)

#include <stdio.h>

int main(int argc,char *argv[]) {

int pid;

int thisPid;

thisPid = getpid();

printf("Forking in (%i).\n",thisPid);

pid = fork();

if (pid < 0) {

fprintf(stderr,"Fork Failed\n");

exit(-1);

}

else if (pid ==0) {

execlp("/bin/ls","ls",NULL);

}

else {

printf("Waiting in (%i) for (%i).\n",thisPid,pid);

wait(NULL);

printf("Child (%i) Complete.\n",pid);

exit(0);

}

}

aspen $ gcc fork.c

aspen $./a.out

Forking in (20946).

Waiting in (20946) for (20947).

a.out fork.c fork.c~

Child (20947) Complete.

Fork Example

10-May-2004 cse410-19-process © 2004 University of Washington 21

W2K CreateProcess function

• Open the program file to be executed
• Create the W2K executive process object
• Create the initial thread (stack, context, ...)
• Notify Win32 subsystem about new process
• Start execution of the initial thread
• Complete initialization (eg, load dlls)
• Continue execution in both processes

Copied fromInside Windows 2000

