Synchronization Part 1

CSE 410, Spring 2004
Computer Systems

http://www.cs.washington.edu/education/courses/410/04sp/

19-May-2004 cse410-23-synchronization-pl © 2004 University of Washington 1

Readings and References

* Reading

» Chapter 7, Operating System Concepts, Silberschatz, Galvin, and
Gagne. Read the following sections: 7.1, 7.2 (skim subsections), 7.3

e Other References

» Chapter 6, Multithreaded Programming with Pthreads, First edition,
Bil Lewis and Daniel J. Berg, Sun Microsystems Press

» Sections 5.8.3, Atomicity and Atomic Changes, 5.8.4, Critical Regions
with Interrupts Enabled, See MIPS Run, Dominic Sweetman

19-May-2004 cse410-23-synchronization-p1l © 2004 University of Washington 2

Too Much Milk

You Your Roommate
3:00 Look in fridge; no milk
3:05 Leave for store

3:10 Arrive at store Look in fridge; no milk
3:15 Buy milk Leave for store

3:20 Arrive home; put milk away Arrive at store

3:25 Buy milk

3:30 Arrive home; put milk away

Oh no, Mr. Bill, too much milk!

19-May-2004 cse410-23-synchronization-pl © 2004 University of Washington 3

Modeling the Problem

» Model you and your roommate as threads
» “Looking in the fridge” and “putting away
milk’ are reading/writing a variable

YOU: YOUR ROOMMATE:
/1 look in fridge
if(mlkAmunt == 0) { /1 1ook in fridge
/1 buy mlk if(mlkAmunt == 0) {
m | KAmount ++; /1 buy mlk
} m | KAmount ++;
}

19-May-2004 cse410-23-synchronization-pl © 2004 University of Washington 4

Correctness Properties

Synchronization Definitions

» Decomposed into safety and liveness

» safety
* the program never does anything bad

» liveness
* the program eventually does something good

» Although easy to state, these properties are not
always easy to meet

 Synchronization
» coordinated access by more than one thread to
shared state variables
» Mutual Exclusion
» only one thread does a particular thing at a time.
One thread doing it excludes all others.
* Critical Section

» only one thread executes in a critical section at
once

19-May-2004 cse410-23-synchronization-pl © 2004 University of Washington 5

19-May-2004 cse410-23-synchronization-p1l © 2004 University of Washington

Locks

» A lock provides mutual exclusion
» Only one thread can hold the lock at a time
» A lock is also called a mutex (for mutual exclusion)
» Thread must acquire the lock before entering a
critical section of code
» Thread releases the lock after it leaves the
critical section

19-May-2004 cse410-23-synchronization-pl © 2004 University of Washington

Too Much Milk: A Solution

YOU: YOUR ROOMMATE:

M | kLock->Acqui re();
if(mlkAmunt == 0){

/1 buy mlk M | kLock->Acqui re();
m | kKAmount ++; '
} ! delay
} v
M | kLock->Rel ease(); ----p If(mlkAmunt == 0){
[l buy mlk
m | KAmount ++;
}
}
M | kLock- >Rel ease();
19-May-2004 cse410-23-synchronization-pl © 2004 University of Washington

Lock Implementation Issue

A context switch can happen at any time
» very simple acquire/release functions don’t work
» in this case, both threads think they set lockinUse

Lock: : Rel ease() {
| ockl nUse = fal se

}

Lock: : Acquire() {
whil e(I ocklnUse) {}
| ockl nUse = true;

} }

Lock: : Acquire() {
whi I e(| ocklnUse) {}
| ockl nUse = true

19-May-2004 cse410-23-synchronization-pl © 2004 University of Washington

Disable interrupts during critical section

disable interrupts to prevent a context switch

» simple but imperfect solution -

Lock: : Acquire() { Lock: : Rel ease() {
di sable interrupts; enabl e interrupts

} }

Kernel can’t get control when interrupts disabled
Critical sections may be long
» turning off interrupts for a long time is very bad

Turning off interrupts is difficult and costly in
multiprocessor systems

19-May-2004 cse410-23-synchronization-p1l © 2004 University of Washington 10

Disable Interrupts with flag

Only disable interrupts when updating a lock flag

initialize value = FREE

Lock: : Acquire() { Lock: : Rel ease() {

di sabl e interrupts;
whi | e(val ue ! = FREE) {
enabl e interrupts
di sable interrupts

}
val ue = BUSY;
enable interrupts

di sabl e interrupts;
val ue = FREE;
enable interrupts

Atomic Operations

19-May-2004 cse410-23-synchronization-pl © 2004 University of Washington

11

» An atomic operation is an operation that
cannot be interrupted

» On a multiprocessor disabling interrupts
doesn’t work well

» Modern processors provide atomic read-
modify-write instruction or equivalent

* These instructions allow locks to be
implemented on a multiprocessor

19-May-2004 cse410-23-synchronization-pl © 2004 University of Washington 12

Examples of Atomic Instructions

» Test and set (many architectures)
» sets a memory location to 1 and returns the previous value
» ifresultis 1, lock was already taken, keep trying
» if result is 0, you are the one who set it so you’ve got the lock

» Exchange (x86)
» swaps value between register and memory

» Compare & swap (68000)

read | ocation val ue

if location value equals conparison val ue
store update value, set flag true

el se
set flag fal se

19-May-2004 cse410-23-synchronization-pl © 2004 University of Washington 13

Quasi-atomic for load/store ISA

* Remember our MIPS pipeline

» only one memory stage per instruction

» thus, can’t do atomic “read, modify, write” directly
e Load linked and store conditional

» read value in one instruction (LL—Ioad linked) and
remember where the value came from

» do some operation on the value

» when store occurs, check if value has been modified in
the meantime (SC—store conditional)

» if not modified, store new value and return “success”
» If modified, return “failure”

19-May-2004 cse410-23-synchronization-p1l © 2004 University of Washington 14

Locks with Test and Set

Lock: : Rel ease() {
val ue = 0;

}

Lock: : Acquire() {
whi | e(Test AndSet (val ue)) {}
}

This works, but take a careful look at the
while loop ... when does it exit?

19-May-2004 cse410-23-synchronization-pl © 2004 University of Washington 15

Busy Waiting

» CPU cycles are consumed while the thread is
waiting for value to become 0
* This is very inefficient

» Big problem if the thread that is waiting has a
higher priority than the thread that holds the
lock

19-May-2004 cse410-23-synchronization-pl © 2004 University of Washington 16

Locks with Minimal Busy Waiting

» Use a queue for threads waiting on the lock
» A guard variable provides mutual exclusion

Lock: : Acquire() {
whi | e(Test AndSet (guard)){}
if(value '= FREE) {
Put self on wait queue;
guard = 0 and switch();

Lock: : Rel ease() {
whi | e(Test AndSet (guard) {}
i f(anyone on wait queue){
nove thread from wait
queue to ready queue;

Synchronization Summary

} else { } else {
val ue = BUSY; val ue = FREE;
guard = O; }
} guard = O;
19-May-2004 cse410-23-synchronization-pl © 2004 University of Washington 17

Threads often work independently
But sometimes threads need to access shared data

Access to shared data must be mutually exclusive to
ensure safety and liveness

Locks are a good way to provide mutual exclusion

19-May-2004 cse410-23-synchronization-p1l © 2004 University of Washington

18

