Synchronization Part 1
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Readings and References

* Reading

» Chapter 7, Operating System Concepts, Silberschatz, Galvin, and
Gagne. Read the following sections: 7.1, 7.2 (skim subsections), 7.3

e Other References

» Chapter 6, Multithreaded Programming with Pthreads, First edition,
Bil Lewis and Daniel J. Berg, Sun Microsystems Press

» Sections 5.8.3, Atomicity and Atomic Changes, 5.8.4, Critical Regions
with Interrupts Enabled, See MIPS Run, Dominic Sweetman

19-May-2004 cse410-23-synchronization-p1l © 2004 University of Washington 2

Too Much Milk

You Your Roommate
3:00 Look in fridge; no milk
3:05 Leave for store

3:10 Arrive at store Look in fridge; no milk
3:15 Buy milk Leave for store

3:20 Arrive home; put milk away  Arrive at store

3:25 Buy milk

3:30 Arrive home; put milk away

Oh no, Mr. Bill, too much milk!
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Modeling the Problem

» Model you and your roommate as threads
» “Looking in the fridge” and “putting away
milk’ are reading/writing a variable

YOU: YOUR ROOMMATE:
/1 look in fridge
if( mlkAmunt == 0 ) { /1 1ook in fridge
/1 buy mlk if( mlkAmunt == 0 ) {
m | KAmount ++; /1 buy mlk
} m | KAmount ++;
}
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Correctness Properties

Synchronization Definitions

» Decomposed into safety and liveness

» safety
* the program never does anything bad

» liveness
* the program eventually does something good

» Although easy to state, these properties are not
always easy to meet

 Synchronization
» coordinated access by more than one thread to
shared state variables
» Mutual Exclusion
» only one thread does a particular thing at a time.
One thread doing it excludes all others.
* Critical Section

» only one thread executes in a critical section at
once
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Locks

» A lock provides mutual exclusion
» Only one thread can hold the lock at a time
» A lock is also called a mutex (for mutual exclusion)
» Thread must acquire the lock before entering a
critical section of code
» Thread releases the lock after it leaves the
critical section
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Too Much Milk: A Solution

YOU: YOUR ROOMMATE:

M | kLock->Acqui re();
if( mlkAmunt == 0 ){

/1 buy mlk M | kLock->Acqui re();
m | kKAmount ++; '
} ! delay
} v
M | kLock->Rel ease(); ----p If( mlkAmunt == 0 ){
[l buy mlk
m | KAmount ++;
}
}
M | kLock- >Rel ease();
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Lock Implementation Issue

A context switch can happen at any time
» very simple acquire/release functions don’t work
» in this case, both threads think they set lockinUse

Lock: : Rel ease() {
| ockl nUse = fal se

}

Lock: : Acquire() {
whil e( I ocklnUse ) {}
| ockl nUse = true;

} }

Lock: : Acquire() {
whi I e( | ocklnUse ) {}
| ockl nUse = true
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Disable interrupts during critical section

disable interrupts to prevent a context switch

» simple but imperfect solution -

Lock: : Acquire() { Lock: : Rel ease() {
di sable interrupts; enabl e interrupts

} }

Kernel can’t get control when interrupts disabled
Critical sections may be long
» turning off interrupts for a long time is very bad

Turning off interrupts is difficult and costly in
multiprocessor systems
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Disable Interrupts with flag

Only disable interrupts when updating a lock flag

initialize value = FREE

Lock: : Acquire() { Lock: : Rel ease() {

di sabl e interrupts;
whi | e(val ue ! = FREE) {
enabl e interrupts
di sable interrupts

}
val ue = BUSY;
enable interrupts

di sabl e interrupts;
val ue = FREE;
enable interrupts

Atomic Operations
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» An atomic operation is an operation that
cannot be interrupted

» On a multiprocessor disabling interrupts
doesn’t work well

» Modern processors provide atomic read-
modify-write instruction or equivalent

* These instructions allow locks to be
implemented on a multiprocessor
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Examples of Atomic Instructions

» Test and set (many architectures)
» sets a memory location to 1 and returns the previous value
» ifresultis 1, lock was already taken, keep trying
» if result is 0, you are the one who set it so you’ve got the lock

» Exchange (x86)
» swaps value between register and memory

» Compare & swap (68000)

read | ocation val ue

if location value equals conparison val ue
store update value, set flag true

el se
set flag fal se
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Quasi-atomic for load/store ISA

* Remember our MIPS pipeline

» only one memory stage per instruction

» thus, can’t do atomic “read, modify, write” directly
e Load linked and store conditional

» read value in one instruction (LL—Ioad linked) and
remember where the value came from

» do some operation on the value

» when store occurs, check if value has been modified in
the meantime (SC—store conditional)

» if not modified, store new value and return “success”
» If modified, return “failure”
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Locks with Test and Set

Lock: : Rel ease() {
val ue = 0;

}

Lock: : Acquire() {
whi | e( Test AndSet (val ue)) {}
}

This works, but take a careful look at the
while loop ... when does it exit?
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Busy Waiting

» CPU cycles are consumed while the thread is
waiting for value to become 0
* This is very inefficient

» Big problem if the thread that is waiting has a
higher priority than the thread that holds the
lock
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Locks with Minimal Busy Waiting

» Use a queue for threads waiting on the lock
» A guard variable provides mutual exclusion

Lock: : Acquire() {
whi | e( Test AndSet (guard)){}
if( value '= FREE ) {
Put self on wait queue;
guard = 0 and switch();

Lock: : Rel ease() {
whi | e( Test AndSet (guard) {}
i f(anyone on wait queue){
nove thread from wait
queue to ready queue;

Synchronization Summary

} else { } else {
val ue = BUSY; val ue = FREE;
guard = O; }
} guard = O;
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Threads often work independently
But sometimes threads need to access shared data

Access to shared data must be mutually exclusive to
ensure safety and liveness

Locks are a good way to provide mutual exclusion
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