
CSE 410 Assignment 1

Spring 2008

Due: Midnight, Monday 4/14/2008

Use electronic submission via the Catalyst tool:
 https://catalysttools.washington.edu/collectit/dropbox/telmas/2218

Reading: Chapter 2 in P&H 3rd edition, or Chapter 3 in P&H 2nd edition; Appendix A,
particularly the sections on MIPS assembly language (on the CD or downloadable from
the spim web site).

Directions: In problems 0-2, resist the temptation to use a calculator that does the
conversion between binary, decimal, and hex automatically.

(0) For the following base 10 values, convert the number to both binary and hexadecimal.
 a. 10
 b. 1011
 c. 396
 d. 4928
 e. What two symbols have a shared meaning across binary, hex, and decimal? (hint:
what values are common to the bases 2, 10, and 16?)

(1) For the following words, convert the binary number to both decimal and hexadecimal.
 a. 1111 0000 1010 0101 0011 1100 0001 1000
 b. 0000 0100 0010 1001 0110 0010 1110 0111

(2) Convert the following from hex to decimal and binary
 a. 0x10110111
 b. 0xBA5EBA11

(3) Show the MIPS instruction or instructions for the following C statements, assuming
that 'a' corresponds to register $t0, 'b' corresponds to $t1, and the base address of the array
'd' is 4,000,000 (base 10), and that each variable is an integer (4 bytes) or array of ints.

 (3a) a = a + b;

 (3b) d[0] = d[1] + b;

(4) Show how the following MIPS instructions are encoded in memory (i.e., the binary
word equivalent, one for each instruction):

 addi $s1, $t1, 5
 add $s0, $t0, $t2
 lw $t3, 32($t2)

(5) Add a comment per line to the following MIPS code and describe in one sentence
what it computes. Assume that $a0 is used for the input and initially contains n, a
positive integer. Assume that $v0 is used for the output. (note: slte is set on less than or
equal to, and is a pseudoinstruction)

 begin: addi $t0, $zero, 0
 addi $t1, $zero, 2
 loop: slte $t2, $a0, $t1
 bne $t2, $zero, finish
 add $t0, $t0, $t1
 addi $t1, $t1, 2
 j loop
finish: add $v0, $t0, $zero

(6) Using the following MIPS assembly, fill out the corresponding register table and
memory table below. The memory has been initialized for you, before the MIPS code
has been executed. Your task is to trace through the code and each time you hit the "j
start" label, record a snapshot of what is currently in memory (addresses 200-216) and in
the registers ($s0,$s1,$s2,$t0,$t1) by filling in the tables. Note that you might have to
add more columns to both tables depending on the number of iterations executed. (Note:
the "addi" instruction is just like "add" except it allows you to add in a small constant
directly rather than specifying a second register. For example, if $s0 contains 3, then after
'add $s2, $s0, 5' executes $s2 will contain 8.)
(6a) In one sentence, explain what this algorithm does?

start: beq $s1, $s2, exit
 add $t0, $s2, $zero
 sll $t0, $t0, 2
 add $t0, $t0, $s0
 lw $t1, 0($t0)
 srl $t1, $t1, 1
 sw $t1, 0($t0)
 addi $s2, $s2, 1
 j start
exit:

Here are the contents of a portion of memory before this snippet runs:

Address Initial
contents

First time at
"j start"

Second time at
"j start" ...

200 50

204 128

208 1024

212 111

216 2

Here are the initial values of the registers before this snippet runs: (Note $t0 and $t1 are
not in the list because they are used only as temporary registers, and their initial values do
not matter.)

Register Initial
contents

First time at
"j start"

Second time at
"j start"

...

$s0 200

$s1 5

$s2 0

$t0 N/A

$t1 N/A

(6b) Extra Credit: Both a conditional branch ("beq $s1, $s2, exit") and an unconditional
jump ("j start") are executed each time through the loop. Only poor compilers would
produce code with this loop overhead. Rewrite the assembly code so that it uses at most
one branch or jump each time through the code. How many instructions are executed
before and after the optimization? (Note: You may find it necessary to put one or more
instructions before the "start" label.)

(7) The following program is analogous to an array copy (of unsigned ints) from one
memory location to another. While copying, we want to keep track of the number of
words copied (ie, the size of the array) and the sum of the individual elements in the
array. The arrays are terminated with null (a completely unset word - all zeroes), and so
this program should also copy the null over, but not include it in the count of items
copied or the summation of the items copied.

The following code has many bugs, but tries to copy words from the address in register
$a0 to the address in register $a1, counting the number of words copied in register $v0
and tallying the sum of those words copied in $v2. The program stops copying when it
finds a word equal to zero, and you do not need to preserve the contents of $v0, $a0, and
$a1.

 add $v2, $zero, $zero #initialize to zero
 or $v0, $v0, $zero #another way to initialize to zero
loop: lw $v1, 0($a0) #read next word from source
 addi $v0, $v0, 1 #increment count words copied
 add $v2, $v2, $v1 #add the value to our running total in v2
 sw $v1, 0($a1) #write to destination
 addi $a0,$a0,32 #advance ptr to next source
 addi $a1, $a1, 32 #advance ptr to next dest
 bne $v1, $zero,loop #loop if word copied not zero

(7a) There are multiple bugs in this program; identify the bugs and describe each in one
sentence, then fix the bugs and turn in a bug-free version.

