Number Formats

CSE 410, Spring 2009
Computer Systems

http://www.cs.washington.edu/410

4/14/2009

cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

Reading and References

« Computer Organization and Design, Patterson and
Hennessy

» Sec. 2.4, Signed and unsigned numbers

» Sec. 3.5, Floating point

* You should understand 2’s complement binary
integer arithmetic, including converting to/from
decimal and addition/subtraction

* You are only responsible for general 1deas
behind floating-point (finite precision and
magnitude, representation), not details

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

Signed Numbers

* We have already talked about unsigned binary
numbers

» each bit position represents a power of 2

» range of values 1s 0 to 2"-1
 How can we indicate negative values?
» two states: positive or negative

» a binary bit indicates one of two states: 0 or 1

—> use one bit for the sign bit

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

Where 1s the sign bit?

* Could use an additional bit to indicate sign
» each value would require 33 bits

» would really foul up the hardware design

* Could use any bit in the 32-bit word

» any bit but the left-most (high order) would
complicate the hardware tremendously

.. The high order bit (left-most) 1s the sign bit

» remaining bits indicate the value

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

Format of 32-bit signed integer

sign bit numeric value
(1 bit) (31 bits)
1010111110001 000100000000000|0000O0
I I B L L[]] I I O I
31 0

* Bit 31 1s the sign bit

» 0 for positive numbers, 1 for negative numbers

» aka most significant bit (msb), high order bit

4/14/2009

cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

Example: 4-bit signed numbers

Unsigned | Signed

Hex Bin Decimal | Decimal . _
E | 1111 15 1 sign bit
E 1110 14 _2 (1 bit)
D 1101 13 -3 ,
C 1100 12 _4 numeric value
B 1011 11 -5 T@ bits)
A 1010 10 -6
9 1001 9 -7 ol .
8 1000 8 -8

""""" Kk 2R e 2 1101 0
| |

OFRLrNWKMOIITO N
o
=
o
o
OFRLNWMKMIITO N

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

Two’s complement notation

* Note special arrangement of negative values
* One zero value, one extra negative value

* The representation is exactly what you get by
doing a subtraction

Decimal Binary
1 0001
- 7 - 0111

-6 1010

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

Why “two’s” complement?

* In an n-bit binary word, negative x 1s represented by the

value of 2°-x. The radix (or base) 1s 2.

» Wikipedia: "The radix complement of an n digit number Y in radix b is b" —y.
Adding this to X results in the value X + b" —y or X —y + b". Assuming y <X, the
result will always be greater than b" and dropping the initial '1' is the same as
subtracting b", making the result X —y + b" — b" or just X — Y, the desired result."

e 4-bit example
24=16. What is the representation of -6?

Decimal Binary
16 10000
- 6 - 0110

10 1010

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington 8

Negating a number

* (Given x, how do we represent negative x?
negative(x) = 2"-x
and x+complement(x) = 2"-1
SO negative(x) = 2"-x = complement(x)+1

* The easy shortcut
» write down the value 1n binary

» complement all the bits
» add 1

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

Example: the negation shortcut

decimal 6 = 0110 = +6
complement = 1001

add 1 = 1010 = -6
decimal -6 = 1010 = -6
complement = 0101

add 1 = 0110 = +6

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

Signed and Unsigned Compares

Unsigned | Signed

Hex Bin Decimal | Decimal

F 1111 15 -1

E 1110 14 -2

D 1101 13 -3

C 1100 12 -4

B 1011 11 -5

A 1010 10 -6

9 1001 9 -7

8 1000 8 -8
7| 0111 | e 7

6 0110 6 6

5 0101 5 5

4 0100 4 4

3 0011 3 3

2 0010 2 2

1 0001 1 1

0 0000 0 0

add

sit

sltu

$t0,%zero,-1
$t1,7
$t2,%t0,$tl # 12 = 1

$t3,$t0,$t1 #1t3 =0

Note: using 4-bit signed
numbers in this example.
The same relationships exist
with 32-bit signed values.

4/14/2009

cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington 11

Loading bytes

* Unsigned: lbu $reg, a($reqg)

» the byte 1s 0-extended into the register

0000 0000|0000 0000|0000 0000 | XXXX XXXX

» Signed: Ib $reg, a($reg)
» bit 7 1s extended through bit 31

0000 0000

0000 0000

0000 0000

OXXX XXXX

1111 1111

1111 1111

1111 1111

IXXX XXXX

4/14/2009

cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

Why Floating Point?

* The numbers we have talked about so far have
all been integers 1n the range 0 to 4B or -2B to
+2B

* What about numbers outside that range?

» population of the planet: 6 billion+

* What about numbers that have a fractional part

in addition to the integer part?
» T0=3.1415926535...

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington 13

Could use scaling to get fractions

* Assume that every numeric value in memory was
scaled by a factor of 1000

3000 => represents 3.000
3010 => represents 3.010

 Problems
» one scale factor for all numbers?

» 1mpossible to choose one “best” scale factor for all
numbers that we might want to represent

e But

» Scaled fixed-point numbers are used 1n specialized
applications (avionics, embedded systems w/o floating pt.)

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington 14

A scale factor for each number

e This 1s the same as scientific notation
» 6 x 107, 3.1415926535 x 10Y

A floating point number contains two parts
» mantissa (or significand): the value
» exponent: the exponent of the scale factor

* Normalized form

» a non-zero single digit before the decimal point

(which sometimes 1s implicit, not actually stored!)

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

“Binary scientific notation”

* The computer only stores binary numbers
» So we use powers of 2 rather than 10

» Normalized numbers have a leading 1

* 6,000,000,000 =6.0x 10°
» 1.3969838619,,x 2%

* T=3.141592653589793238462643383
» 1.57079632679489661923132169163975 x 2!

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

Storage format: fixed width fields

 How big can the exponent be?

» what 1s the range it represents?

 How big can the mantissa be?
» what are the values it represents? how many
digits?
* We have to select a storage format and allocate
specific fields to various purposes
» single precision: one 32-bit word

» double precision: two 32-bit words

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington 17

IEEE 754 Standard

* Chaos in the 70s and 80s as each system
designer chose new formats and rules

 IEEE 754 standard

» format of the fields
» rounding: up, down, towards 0, nearest
» exceptional values: finfinity, NaN (not a number)

» action to take on exceptional values

4/14/2009

cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington 18

Floating Point Storage

» Single Precision

» one word (32 bits)

 Double Precision

» two words (64 bits)

» the order of the words depends on endianness of
the machine being used

* Defined by IEEE 754

4/14/2009

cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

Single Precision Format

S exponent mantissa

1 8 bits 23 bits

010000011111 101110000000000000000
I I B N I O B

4/14/2009

cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

20

Double Precision Format

exponent
11 bits

mantissa (high order bits)
20 bits

100
||

0001
| [|

1111

0111

0000
| [|

0000
| [|

00O0O

00O0O

mantissa (low order bits)

32 bits

0O0O0O

00O0O

00O0O

00O0O

00O0O

00O0O

00O0O

00O0O

4/14/2009

cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

A

Double Precision Mantissa Fields

* Sign bit
» 1 bit sign for the value
* Mantissa
» 52 bits for the value
» by definition, the leading digit 1s always a 1
» so we don’t need to actually store i1t

» and we actually have 53 bits of information

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

72

Double Precision Exponent Field

* Field range
» 11 bits: range 2! = 2048 possible values

* Special values
» exponent = 2047 = value=special (inf, NaN)
» exponent = 0 = value=0

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

23

Biased Notation

* Need exponent range - negative and positive

* If positive exponents are bigger numbers than
the negative exponents, then floating point
numbers can be sorted as integers

* Exponent 1s stored as (E+1023)
» most positive exponent 1s +1023 (stored as 2046)

» most negative exponent 1s -1022 (stored as 1)

» this 1s not two’s complement notation

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

4

Example: 6,174,015,488

* 6174015488
= 6.174015488 x 10°=1.4375,, x 23

* Exponent
= 32+1023 = 1055 =41F,,

e Mantissa
= 4375,,=.0111,=7,,

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

25

6,174,015,488

S exponent mantissa (high order bits)
1 11 bits 20 bits
01 0000011111011 10000000000000000O0
| L[| L[| L[| L[| L[| L[| L[|
hex: 4 1 F 7 o) 0] 0] o)
mantissa (low order bits)
32 bits
O000O0OO0OO0OOOOODOOOODOIOOODOIOOOOIOOODOIODOOO
L[| L[| L[| L[| L[| L[|

4/14/2009

cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington

26

Roundoftf Error

* Adding a very small floating point number to a

very large floating point number may not have
any effect

» any one number has only 53 significant bits

* Adding a number with a fractional part to
another number over and over will probably
never yield an exactly integer result

» so don’t use floating point loop indexes
» and be very wary of comparing f.p values for ==

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington 21

Loss of precision

1101 0000 0000 0000.0000 0000 0000 0000 = 1.101, x 2%

0000 0000 0000 0000.0000 0000 0000 1101 = 1.101, x 2°13

e These are not unusual numbers
53248 and 0.0001983642578125

» Very few bits of mantissa required

* But their sum requires a mantissa with at
least 32 bits or there will lost significant bits

4/14/2009 cse410-09-formats © 2006-09 Perkins, DW Johnson & University of Washington 28

