Number Formats

CSE 410, Spring 2009 Computer Systems

http://www.cs.washington.edu/410

Reading and References

- Computer Organization and Design, Patterson and Hennessy
 - » Sec. 2.4, Signed and unsigned numbers
 - » Sec. 3.5, Floating point
- You should understand 2's complement binary integer arithmetic, including converting to/from decimal and addition/subtraction
- You are only responsible for general ideas behind floating-point (finite precision and magnitude, representation), not details

Signed Numbers

- We have already talked about unsigned binary numbers
 - » each bit position represents a power of 2
 - » range of values is 0 to 2^{n} -1
- How can we indicate negative values?
 - » two states: positive or negative
 - » a binary bit indicates one of two states: 0 or 1
 ⇒ use one bit for the sign bit

Where is the sign bit?

- Could use an additional bit to indicate sign
 - » each value would require 33 bits
 - » would really foul up the hardware design
- Could use any bit in the 32-bit word
 - » any bit but the left-most (high order) would complicate the hardware tremendously
- The high order bit (left-most) is the sign bit
 remaining bits indicate the value

4

Format of 32-bit signed integer

- Bit 31 is the sign bit
 - » 0 for positive numbers, 1 for negative numbers
 - » aka most significant bit (msb), high order bit

Example: 4-bit signed numbers

Hex	Bin	Unsigned Decimal	Signed Decimal	
F E D C B A 9 8 7 6	1111 1110 1101 1100 1011 1010 1001 1000 0111 0110	Decimal 15 14 13 12 11 10 9 8 7 6	Decimal -1 -2 -3 -4 -5 -6 -7 -8 7 6	sign bit (1 bit) numeric value (3 bits) 1 0 1 0
5 4	0101 0100	5 4	5 4	
3 2	0011 0010	3 2	3 2	
1	0001	1	1	
0	0000	0	0	

Two's complement notation

- Note special arrangement of negative values
- One zero value, one extra negative value
- The representation is exactly what you get by doing a subtraction

Decimal	Binary
1	0001
- 7 	- 0111
-6	1010

Why "two's" complement?

- In an n-bit binary word, negative x is represented by the value of 2ⁿ-x. The radix (or base) is 2.
 - » Wikipedia: "The **radix complement** of an *n* digit number *y* in radix *b* is $b^n y$. Adding this to *x* results in the value $x + b^n - y$ or $x - y + b^n$. Assuming $y \le x$, the result will always be greater than b^n and dropping the initial '1' is the same as subtracting b^n , making the result $x - y + b^n - b^n$ or just x - y, the desired result."
- 4-bit example

 $2^4 = 16$. What is the representation of -6?

Decimal	Binary
16	10000
- 6	- 0110
10	1010

Negating a number

- Given x, how do we represent negative x?

 negative(x) = 2ⁿ-x
 and x+complement(x) = 2ⁿ-1
 so negative(x) = 2ⁿ-x = complement(x)+1
- The easy shortcut
 - » write down the value in binary
 - » complement all the bits
 - » add 1

Example: the negation shortcut

- decimal 6 = 0110 = +6
- complement = 1001
 - add 1 = 1010 = -6
- decimal -6 = 1010 = -6complement = 0101 add 1 = 0110 = +6

Signed and Unsigned Compares

Hex	Bin	Unsigned Decimal	Signed Decimal
F	1111	15	-1
E	1110	14	-2
D	1101	13	-3
C	1100	12	-4
в	1011	11	-5
A	1010	10	-6
9	1001	9	-7
8	1000	8	-8
7	0111	7	7
6	0110	б	6
5	0101	5	5
4	0100	4	4
3	0011	3	3
2	0010	2	2
1	0001	1	1
0	0000	0	0

add	\$t0,\$zero, <mark>-1</mark>				
li	\$t1,7				
slt	\$t2,\$t0,\$t1	#	t2	=	1
sltu	\$t3,\$t0,\$t1	#	t3	=	0

Note: using 4-bit signed numbers in this example. The same relationships exist with 32-bit signed values.

Loading bytes

- Unsigned: 1bu \$reg, a(\$reg)
 - » the byte is 0-extended into the register

0000 0000 0000 0000 0000 xxxx xxxx

- Signed: 1b \$reg, a(\$reg)
 - » bit 7 is extended through bit 31

0000 0000 0000 0000 0000 0000 0xxx xxxx

1111 1111 1111 1111 1111 1111 1xxx xxxx	1111 1111	1111 1111	1111 1111	1xxx xxxx
---	-----------	-----------	-----------	-----------

Why Floating Point?

- The numbers we have talked about so far have all been integers in the range 0 to 4B or -2B to +2B
- What about numbers outside that range? » population of the planet: 6 billion+
- What about numbers that have a fractional part in addition to the integer part?

» $\pi = 3.1415926535...$

Could use scaling to get fractions

- Assume that every numeric value in memory was scaled by a factor of 1000
 - 3000 => represents 3.000
 - 3010 => represents 3.010
- Problems
 - » one scale factor for all numbers?
 - » impossible to choose one "best" scale factor for all numbers that we might want to represent
- But
 - » Scaled fixed-point numbers are used in specialized applications (avionics, embedded systems w/o floating pt.)

A scale factor for each number

- This is the same as scientific notation
 » 6 x 10⁹, 3.1415926535 x 10⁰
- A floating point number contains two parts » mantissa (or significand): the value
 - » exponent: the exponent of the scale factor
- Normalized form
 - » a non-zero single digit before the decimal point (which sometimes is implicit, not actually stored!)

"Binary scientific notation"

- The computer only stores binary numbers
 - » So we use powers of 2 rather than 10
 - » Normalized numbers have a leading 1
- 6,000,000,000 = 6.0 x 10^9
 - » $1.3969838619_{10} \ge 2^{32}$
- $\pi \cong 3.141592653589793238462643383$ » 1.57079632679489661923132169163975 x 2¹

Storage format: fixed width fields

- How big can the exponent be?
 - » what is the range it represents?
- How big can the mantissa be?
 - » what are the values it represents? how many digits?
- We have to select a storage format and allocate specific fields to various purposes
 - » single precision: one 32-bit word
 - » double precision: two 32-bit words

IEEE 754 Standard

- Chaos in the 70s and 80s as each system designer chose new formats and rules
- IEEE 754 standard
 - » format of the fields
 - » rounding: up, down, towards 0, nearest
 - » exceptional values: ±infinity, NaN (not a number)
 - » action to take on exceptional values

Floating Point Storage

- Single Precision
 - » one word (32 bits)
- Double Precision
 - » two words (64 bits)
 - » the order of the words depends on endianness of the machine being used
- Defined by IEEE 754

Single Precision Format

Double Precision Format

s	exponent								mantissa (high order bits)																						
1	1 11 bits								20 bits																						
0	1	0	0	0	0	0	1	1	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Double Precision Mantissa Fields

- Sign bit
 - » 1 bit sign for the value
- Mantissa
 - » 52 bits for the value
 - » by definition, the leading digit is always a 1
 - » so we don't need to actually store it
 - » and we actually have 53 bits of information

Double Precision Exponent Field

- Field range
 - » 11 bits: range $2^{11} = 2048$ possible values
- Special values
 - » exponent = $2047 \Rightarrow$ value=special (inf, NaN)
 - \gg exponent = 0 \Rightarrow value=0

Biased Notation

- Need exponent range negative and positive
- If positive exponents are bigger numbers than the negative exponents, then floating point numbers can be sorted as integers
- Exponent is stored as (E+1023)
 - » most positive exponent is +1023 (stored as 2046)
 - » most negative exponent is -1022 (stored as 1)
 - » this is not two's complement notation

Example: 6,174,015,488

• 6174015488

 $= 6.174015488 \times 10^9 = 1.4375_{10} \times 2^{32}$

• Exponent

$$= 32 + 1023 = 1055 = 41F_{16}$$

• Mantissa

$$= .4375_{10} = .0111_2 = 7_{16}$$

6,174,015,488

Roundoff Error

• Adding a very small floating point number to a very large floating point number may not have any effect

» any one number has only 53 significant bits

- Adding a number with a fractional part to another number over and over will probably never yield an exactly integer result
 - » so don't use floating point loop indexes
 - » and be very wary of comparing f.p values for ==

Loss of precision

 $\frac{1101\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ =\ 1.101_2\ x\ 2^{15}}{0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 1101\ =\ 1.101_2\ x\ 2^{-13}}$

- These are not unusual numbers 53248 and 0.0001983642578125
- Very few bits of mantissa required
- But their sum requires a mantissa with at least <u>32 bits</u> or there will lost significant bits