Number Formats

CSE 410, Spring 2009
 Computer Systems

http://www.cs.washington.edu/410

Reading and References

- Computer Organization and Design, Patterson and Hennessy
» Sec. 2.4, Signed and unsigned numbers
» Sec. 3.5, Floating point
- You should understand 2's complement binary integer arithmetic, including converting to/from decimal and addition/subtraction
- You are only responsible for general ideas behind floating-point (finite precision and magnitude, representation), not details

Signed Numbers

- We have already talked about unsigned binary numbers
» each bit position represents a power of 2
» range of values is 0 to $2^{\mathrm{n}}-1$
- How can we indicate negative values?
» two states: positive or negative
» a binary bit indicates one of two states: 0 or 1
\Rightarrow use one bit for the sign bit

Where is the sign bit?

- Could use an additional bit to indicate sign
» each value would require 33 bits
» would really foul up the hardware design
- Could use any bit in the 32-bit word
» any bit but the left-most (high order) would complicate the hardware tremendously
- \therefore The high order bit (left-most) is the sign bit
" remaining bits indicate the value

Format of 32-bit signed integer

sign bit
(1 bit)
numeric value
(31 bits)

- Bit 31 is the sign bit
» 0 for positive numbers, 1 for negative numbers
» aka most significant bit (msb), high order bit

Example: 4-bit signed numbers

Hex	Bin	Unsigned Decimal	Signed Decimal
F	1111	15	-1
E	1110	14	-2
D	1101	13	-3
C	1100	12	-4
B	1011	11	-5
A	1010	10	-6
9	1001	9	-7
8	1000	8	-8
7	0111	7	7
6	0110	6	6
5	0101	5	5
4	0100	4	4
3	0011	3	3
2	0010	2	2
1	0001	1	1
0	0000	0	0

Two's complement notation

- Note special arrangement of negative values
- One zero value, one extra negative value
- The representation is exactly what you get by doing a subtraction

Decimal	Binary
1	0001
-7	-0111
---	---
-6	1010

Why "two's" complement?

- In an n-bit binary word, negative x is represented by the value of 2^{n}-x. The radix (or base) is 2 .
» Wikipedia: "The radix complement of an n digit number y in radix b is $b^{n}-y$. Adding this to x results in the value $x+b^{n}-y$ or $x-y+b^{n}$. Assuming $y \leq x$, the result will always be greater than b^{n} and dropping the initial ' 1 ' is the same as subtracting b^{n}, making the result $x-y+b^{n}-b^{n}$ or just $x-y$, the desired result."
- 4-bit example
$2^{4}=16$. What is the representation of -6 ?

Decimal	Binary
$-\quad 6$	10000
---	0110
10	---

Negating a number

- Given x , how do we represent negative x ? negative $(x)=2^{n}-x$
and $x+c o m p l e m e n t(x)=2^{n-1}$
so negative $(x)=2^{n}-x=$ complement $(x)+1$
- The easy shortcut
» write down the value in binary
" complement all the bits
» add 1

Example: the negation shortcut

$$
\begin{aligned}
\text { decimal } 6 & =0110=+6 \\
\text { complement } & =1001 \\
\text { add } 1 & =1010=-6 \\
\text { decimal }-6 & =1010=-6 \\
\text { complement } & =0101 \\
\text { add } 1 & =0110=+6
\end{aligned}
$$

Signed and Unsigned Compares

Hex	Bin	Unsigned Decimal	Signed Decimal	add	\$t0,\$zero,-1
F	1111	15	-1		
E	1110	14	-2	li	\$t1, 7
D	1101	13	-3		
C	1100	12	-4	slt	\$t2,\$t0,\$t1 \# t2 = 1
B	1011	11	-5		
A	1010	10	-6	sltu	\$t3,\$t0,\$t1 \# t3 = 0
9	1001	9	-7		
8	1000	8	-8		
7	0111	7	7		
6	0110	6	6		
5	0101	5	5		Note: using 4-bit signed
4	0100	4	4		numbers in this example.
3	0011	3	3		The same relationships exist
2	0010	2	2		with 32-bit signed values.
1	0001	1	1		
0	0000	0	0		

Loading bytes

- Unsigned: lbu \$reg, a(\$reg)
» the byte is 0 -extended into the register

0000	0000	0000	0000	0000
0000	xxxx xxxx			

- Signed: lb \$reg, a(\$reg)
» bit 7 is extended through bit 31

0000	0000	0000	0000	0000
0000	$0 x x x ~ x x x x$			

$$
\begin{array}{|ll|ll|l|l|l|}
\hline 1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1 x x x ~ x x x x \\
\hline
\end{array}
$$

Why Floating Point?

- The numbers we have talked about so far have all been integers in the range 0 to 4 B or -2 B to $+2 \mathrm{~B}$
- What about numbers outside that range?
» population of the planet: 6 billion+
- What about numbers that have a fractional part in addition to the integer part?
» $\pi=3.1415926535 \ldots$

Could use scaling to get fractions

- Assume that every numeric value in memory was scaled by a factor of 1000
$3000=>$ represents 3.000
$3010=>$ represents 3.010
- Problems
» one scale factor for all numbers?
" impossible to choose one "best" scale factor for all numbers that we might want to represent
- But
» Scaled fixed-point numbers are used in specialized applications (avionics, embedded systems w/o floating pt.)

A scale factor for each number

- This is the same as scientific notation

$$
» 6 \times 10^{9}, 3.1415926535 \times 10^{0}
$$

- A floating point number contains two parts
» mantissa (or significand): the value
» exponent: the exponent of the scale factor
- Normalized form
» a non-zero single digit before the decimal point (which sometimes is implicit, not actually stored!)

"Binary scientific notation"

- The computer only stores binary numbers
» So we use powers of 2 rather than 10
» Normalized numbers have a leading 1
- $6,000,000,000=6.0 \times 10^{9}$
» $1.3969838619_{10} \times 2^{32}$
- $\pi \cong 3.141592653589793238462643383$
» $1.57079632679489661923132169163975 \times 2^{1}$

Storage format: fixed width fields

- How big can the exponent be?
» what is the range it represents?
- How big can the mantissa be?
» what are the values it represents? how many digits?
- We have to select a storage format and allocate specific fields to various purposes
» single precision: one 32-bit word
» double precision: two 32-bit words

IEEE 754 Standard

- Chaos in the 70s and 80s as each system designer chose new formats and rules
- IEEE 754 standard
» format of the fields
» rounding: up, down, towards 0 , nearest
» exceptional values: \pm infinity, NaN (not a number)
" action to take on exceptional values

Floating Point Storage

- Single Precision
» one word (32 bits)
- Double Precision
» two words (64 bits)
» the order of the words depends on endianness of the machine being used
- Defined by IEEE 754

Single Precision Format

Double Precision Format

Double Precision Mantissa Fields

- Sign bit
» 1 bit sign for the value
- Mantissa
» 52 bits for the value
" by definition, the leading digit is always a 1
» so we don't need to actually store it
» and we actually have 53 bits of information

Double Precision Exponent Field

- Field range
" 11 bits: range $2^{11}=2048$ possible values
- Special values
» exponent $=2047 \Rightarrow$ value=special (inf, NaN)
» exponent $=0 \Rightarrow$ value $=0$

Biased Notation

- Need exponent range - negative and positive
- If positive exponents are bigger numbers than the negative exponents, then floating point numbers can be sorted as integers
- Exponent is stored as ($\mathrm{E}+1023$)
» most positive exponent is +1023 (stored as 2046)
" most negative exponent is -1022 (stored as 1)
» this is not two's complement notation

Example: 6,174,015,488

- 6174015488

$$
=6.174015488 \times 10^{9}=1.4375_{10} \times 2^{32}
$$

- Exponent

$$
=32+1023=1055=41 \mathrm{~F}_{16}
$$

- Mantissa

$$
=.4375_{10}=.0111_{2}=7_{16}
$$

6,174,015,488

Roundoff Error

- Adding a very small floating point number to a very large floating point number may not have any effect
» any one number has only 53 significant bits
- Adding a number with a fractional part to another number over and over will probably never yield an exactly integer result
» so don't use floating point loop indexes
» and be very wary of comparing f.p values for $==$

Loss of precision

```
1101 0000 0000 0000.0000 0000 0000 0000 = 1.101 < > 2 25
0000 0000 0000 0000.0000 0000 0000 1101 = 1.101 > > 2-13
```

- These are not unusual numbers 53248 and 0.0001983642578125
- Very few bits of mantissa required
- But their sum requires a mantissa with at least 32 bits or there will lost significant bits

