
 CSE 410 Final Exam 12/10/13

 Page 1 of 14

Name ________________________________

Do not write your id number or any other confidential information on this page.

There are 10 problems worth a total of 120 points. The point value of each problem is

indicated in the table on the next page. Write your answers neatly in the spaces provided.

If you need more space (you shouldn't), you can write on the back of the sheet where the

question is posed, but please make sure that you indicate clearly the problem to which the

comments apply. Do NOT use any other paper to hand in your answers. If you have

difficulty with part of a problem, move on to the next one. They are mostly independent

of each other.

The last pages of the test contains a table of powers-of-two and reminders about some

common x86 instructions and conventions. Feel free to separate these pages from the rest

of the exam. Other pages containing code for questions can also be detached if you like –

the bottom of the page will indicate if this is okay.

The exam is CLOSED book and CLOSED notes. Please do not ask or provide anything

to anyone else in the class during the exam. Make sure to ask clarification questions

early so that both you and the others may benefit as much as possible from the answers.

Please wait to turn the page until everyone is told to begin.

 CSE 410 Final Exam 12/10/13

 Page 2 of 14

Score _________________ / 120

1. ______ / 15

2. ______ / 15

3. ______ / 7

4. ______ / 7

5. ______ / 14

6. ______ / 10

7. ______ / 25

8. ______ / 6

9. ______ / 6

10. ______ / 15

 CSE 410 Final Exam 12/10/13

 Page 3 of 14

Question 1. (15 points) (some mystery code, or the ghosts of midterms past)

Once again one of the interns has lost the source code to an important function. We have

been able to discover that the function starts like this:

int f(int a, int b, int c) { ... }

But beyond that, all we’ve been able to find is an assembly file produced by gcc when it

compiled the function on an x86-64 machine:

f: cmpl %esi, %edi

 jle .L2

 leal (%rsi,%rdx), %eax

 ret

.L2:

 addl %esi, %edi

 cmpl %edx, %esi

 movl $0, %eax

 cmovg %edi, %eax # cmovg = conditional move greater

 ret

In the space below, translate the assembly language function given above into C. The

function heading is written for you. (Reminder: there is useful reference information on

the last two pages of the exam.)

int f(int a, int b, int c) {

}

 CSE 410 Final Exam 12/10/13

 Page 4 of 14

Question 2. (15 points) (buffers and stack frames) Consider the following function,

which calls the same Gets function used in the buffer overflow lab to read a sequence of

bytes.

int f(int a, int b) {

 char s[2];

 int x=a;

 int y=x+b;

 Gets(s);

 return y;

}

When this function was compiled on an x86-64 machine, gcc produced the following

assembly code:

f: pushq %rbp

 movq %rsp, %rbp

 subq $32, %rsp #### location for (a), next page ####

 movl %edi, -20(%rbp)

 movl %esi, -24(%rbp)

 movl -20(%rbp), %eax

 movl %eax, -4(%rbp)

 movl -24(%rbp), %eax

 movl -4(%rbp), %edx

 addl %edx, %eax

 movl %eax, -8(%rbp)

 leaq -16(%rbp), %rax

 movq %rax, %rdi

 call Gets

 movl -8(%rbp), %eax

 leave

 ret

Answer questions about this function on the next page. You may remove this page for

reference if you wish.

 CSE 410 Final Exam 12/10/13

 Page 5 of 14

Question 2. (cont.) (a) (10 points) Below is a chart showing the layout of the stack right

after execution of the pushq/movq/subq instructions at the beginning of the function,

marked by #### in the code. The picture is drawn using 32-bit words since almost all of

the values in the stack frame are 32-bit integers.

Label each 32-bit word below with the name of the variable or temporary value it

contains. If some word or parts of a word are unused you should leave them blank. Be

sure to show where the char array s is located, even though it does not occupy a full 32-

bit word. Also show where the return address and old %rbp values that have been

pushed onto the stack are located. (And remember that those addresses are 64-bit values

so they will occupy two of these 32-bit slots.)

+16

+12

+8

+4

Offset from %rbp: 0 ← %rbp

-4

-8

-12

-16

-20

-24

-28

-32 ← %rsp

-36

(b) (5 points) Give the values of a string of bytes to be read by Gets that will cause this

function to return the value 7 instead of the value it would normally return. You should

give your answer as a string of hex digits giving the byte values for the input in the same

format used as input to sendstring in lab 3, i.e., a pair of hex digits for each byte, like

31 32 33.

 CSE 410 Final Exam 12/10/13

 Page 6 of 14

Some short questions about the memory hierarchy. You are not required to show your

work, but it’s not a bad idea to show some details in case we need to figure out what

happened if we need to award partial credit.

Question 3. (7 points) (cache geometry) The Intel i7 processor has a L3 cache with the

following characteristics:

 Total data size 8MB

 Block size 64 bytes

 16-way associative

How many sets (rows) are there in this cache?

Question 4. (7 points) (access times) Suppose we have a memory system with a single-

level cache and the following characteristics:

 Cache access time 2 nsec

 Main memory access time 300 nsec

 Hit ratio 98%

What is the average access time of this memory system?

 CSE 410 Final Exam 12/10/13

 Page 7 of 14

Question 5. (14 points) (hit or miss?)

(a) (7 points) Suppose we have a direct-mapped cache containing 128 (0x80) total bytes

with 32-byte (0x20) cache blocks. What is the miss rate of the following code?

 double x[32], y[32];

 int i;

 for (i = 0; i < 32; i++) {

 y[i] = 2*x[i];

 }

Assumptions:

 The cache is initially empty.

 Array x begins at memory address 0x100 and array y begins at memory address

0x200.

 All variables and code other than the arrays x and y are stored in registers (i.e.,

they do not affect the data cache).

 Doubles occupy 8 bytes each.

(b) (7 points) Now suppose we replace the cache from part (a) with another cache that has

the same total size of 128 bytes, same block size of 32 bytes, but is 2-way associative

(i.e., each set has two blocks and there are half as many sets as in part (a)). What is the

miss rate now if we execute the same code from part (a) under the same assumptions

except for these changes?

 CSE 410 Final Exam 12/10/13

 Page 8 of 14

Question 6. (10 points) (which is best?) Here are two functions that store zeros in the

upper-right triangular half of a square array.

#define SIZE 10000

void zero1(double matrix[SIZE][SIZE]) {

 int r,c;

 for (c=0; c<SIZE; c++) {

 for (r=0; r<=c; r++) {

 matrix[r][c] = 0.0;

 }

 }

}

void zero2(double matrix[SIZE][SIZE]) {

 int r,c;

 for (r=0; r<SIZE; r++) {

 for (c=r; c<SIZE; c++) {

 matrix[r][c] = 0.0;

 }

 }

}

Given that they both do the same thing, is there any reason to prefer one over the other?

Give a brief technical justification for your answer.

 CSE 410 Final Exam 12/10/13

 Page 9 of 14

Question 7. (25 points) (caches and virtual memory)

We have a memory system with the following characteristics:

 16 bit virtual addresses (4 hex digits), page size of 64 bytes

 12 bit physical addresses (3 hex digits), same page size (of course)

 Memory cache with 16 entries, direct mapped, 4-byte blocks

 Page table with 1024 entries; only the first 16 shown below

 TLB with 16 entries, 4-way set associative

The current state of the memory system is shown in the following tables. You can

remove this page for reference while working on the parts of this question.

TLB

Page Table (First 16 entries)

Cache

 CSE 410 Final Exam 12/10/13

 Page 10 of 14

Question 7. (cont.) (a) (5 points) Label the bits corresponding to each of the

components of the virtual address, namely, the virtual page number (VPN), the virtual

page offset (VPO), the TLB set index (TLBI), and the TLB tag value (TLBT).

(b) (5 points) Label the bits corresponding to each of the components of the physical

address, namely, the physical page number (PPN), the physical page offset (PPO), the

cache set index (CI), the cache tag value (CT), and the cache byte offset (CO).

(c) (15 points) Indicate the result when each virtual address in the table below is used to

access memory. You should specify whether there is a TLB miss, page fault, and/or

cache miss, the physical address referenced, and the contents of memory at that location.

In some cases there is not enough information to determine what value is accessed or

whether there is a cache miss or not. In those cases, write ND (for Not Determinable) in

the appropriate entry. Fill in each row of the table using the initial conditions shown in

the tables on the previous page; accesses in previous rows do not affect the result of later

rows. (Hint: There is a binary-hex conversion table at the end of the test.)

Virtual Address Physical Address Value TLB Miss? Page Fault? Cache Miss?

0x03A0

0x006C

0x0002

 CSE 410 Final Exam 12/10/13

 Page 11 of 14

A couple of short questions on disks and files.

Question 8. (6 points) Suppose we have a hard disk that rotates at 6000 rpm (100

revolutions per second) and has an average seek time of 5 msec. What is the average

expected time to access a block at some arbitrary location on the disk?

Question 9. (6 points) What’s the difference between the directory entry for a file and

the file’s inode on a classic Unix file system? A brief answer should be sufficient.

 CSE 410 Final Exam 12/10/13

 Page 12 of 14

Question 10. (15 points) Almost done! Consider the following program:

int main() {

 int p, q;

 int val = 1;

 p = fork();

 printf("fork returned %d\n", p);

 if (p > 0) {

 q = fork();

 val++;

 printf("fork returned %d\n", q);

 printf("val = %d\n", val);

 } else {

 printf("adios\n");

 }

 return 0;

}

For this problem, assume that there are no other processes on the system, and that when

we run this program, the process id of the initial process is 1000. Each time a new

process is created by fork() the new process is assigned the next available number:

1001, 1002, and so forth.

Below show two possible output sequences written by this program when it is executed.

If the program can only produce one possible output sequence, give that sequence and

explain why it is the only one possible.

Best wishes for the holidays!

 CSE 410 Final Exam 12/10/13

 Page 13 of 14

REFERENCES

Powers of 2:

2
0
 = 1

2
1
 = 2 2

-1
 = .5

2
2
 = 4 2

-2
 = .25

2
3
 = 8 2

-3
 = .125

2
4
 = 16 2

-4
 = .0625

2
5
 = 32 2

-5
 = .03125

2
6
 = 64 2

-6
 = .015625

2
7
 = 128 2

-7
 = .0078125

2
8
 = 256 2

-8
 = .00390625

2
9
 = 512 2

-9
 = .001953125

2
10

 = 1024 2
-10

 = .0009765625

Assembly Code Instructions:

push push a value onto the stack and decrement the stack pointer

pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack

ret pop return address from stack and jump there

mov move a value between registers or registers and memory

cmovcc conditionally move a value between registers or registers and memory

 depending on condition codes cc.

lea compute effective address and store in a register

add add 1
st
 operand to 2

nd
 with result stored in 2

nd

sub subtract 1
st
 operand from 2

nd
 with result stored in 2

nd

and bit-wise AND of two operands with result stored in 2
nd

or bit-wise OR of two operands with result stored in 2
nd

sar shift data in the 2
nd

 operand to the right (arithmetic shift) by the number of

bits specified in the 1
st
 operand

jmp jump to address

jne conditional jump to address if zero flag is not set

jcc conditional jump to address depending on condition codes cc (many

 possible versions such as jle, jg, je, ja, etc.)

cmp subtract 1
st
 operand from 2

nd
 operand and set flags

test bit-wise AND 1
st
 operand from 2

nd
 operand and set flags

 CSE 410 Final Exam 12/10/13

 Page 14 of 14

Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved,

namely, rbx , rbp , r12 , r13 , r14 , and r15 . rsp is a special register.

Binary-Hex conversion

0x0 = 0b0000

0x1 = 0b0001

0x2 = 0b0010

0x3 = 0b0011

0x4 = 0b0100

0x5 = 0b0101

0x6 = 0b0110

0x7 = 0b0111

0x8 = 0b1000

0x9 = 0b1001

0xA = 0b1010

0xB = 0b1011

0xC = 0b1100

0xD = 0b1101

0xE = 0b1110

0xF = 0b1111

