University of Washington

Computer Systems

CSE 410 Autumn 2013
2 — Memory and its Data

University of Washington

Memory & data
Road ma p Integers & floats
C: Java: Machine code & C
: : x86 assembly
car *c = malloc(sizeof(car)); | |Car ¢ = new Car(); Procedures & stacks
c->miles = 100; c.setMiles (100) ; Arrays & structs
c->gals = 17; S ECHER B § Memory & caches
float mpg = get mpg(c) ; float mpg = y
free (c) ; c.getMPG () ; Processes
- — Virtual memory
Assembly get mpg: Memory allocation
language: pushg %rbp Java vs. C

movq %rsp, S%rbp
popq $rbp

ret
v

Machine 0111010000011000
de- 100011010000010000000010
coae. 1000100111000010
110000011111101000011111
Computer

system:

Preliminaries

University of Washington

Memory, Data, and Addressing

Preliminaries
Representing information as bits and bytes

Organizing and addressing data in memory
Manipulating data in memory using C

Boolean algebra and bit-level manipulations

m Reading: Bryant/O’Hallaron sec. 2.1

Hardware: Logical View

CPU

Memory

Etc.

University of Washington

University of Washington

Hardware: Semi-Logical View

Intel* Core™2 Duo Processor
Intel® Core™2 Quad Processor

|10.6 GB/s

PCl Expres.s‘ 2.0 16 lanes
Graphics 16 GB/s

DDR2 or DDR3
6.4 GB/s or 8.5 GB/s
DDRZ2 or DDR3

or
PCl Express* 2.0 { 8 lanes
Graphics 8 GB/s
PCl Express* 2.0
Graphics

6.4 GB/s or 8.5 GB/s

Intel* High
Definition Audio
Intel* Quiet System

Technology

2 6 Serial ATA Ports; eSATA;
Port Disable

8 lanes
‘SGB/S

2 GB/s| DMI

12 Hi-Speed USB 2.0 Ports; slaels
Dual EHCI; USB Port Disable BRI

500

MB/s
each x1

6 PCl Express” x1

Intel® Integrated

10/100/1000 MAC Intel* Matrix

LPC Jor SPI Storage Technology

Intel® Turbo Memory

Intel® Gigabit LAN Connect BIOS Support with User Pinning

Intel* Extreme Tuning
Support B - Optional

Intel® P45 Express Chipset Block Diagram

J

Memory

University of Washington

Hardware: Physical View

PCl-Express Slots
1 PCI-E X16, 2 PCI-E X1 Back Panel Connectors

PCI Slots |

Socket 775
Core2 Quad/
Core2 Extreme
Ready

Intel P45
Chipset

Intel ICH10

Chipset DDR2

1066+MHz
Dual Channel
Memory Slots

Serial ATA
Headers

Parallel Port RJ-45 Gigabit LAN Pont

PS/2 Mouse

Port Audio Ports

PS/2 Keyboard
Port

Senal Port USB 2.0 Ports
Memory

University of Washington

CPU “Memory”: Registers and Instruction Cache

Transparent
(hw controlled)
instruction
caching

Registers

Instruction

%
Cache Memory

Program
controlled
data
movement

o There are a fixed number of registers in the CPU
o Registers hold data
o Thereis an I-cache in the CPU that holds recently fetched instructions

o If you execute a loop that fits in the cache, the CPU goes to memory for
those instructions only once, then executes it out of its cache

o This slide is just an introduction.
We'll see a fuller explanation later in the course.

Memory 7

University of Washington

Performance: It's Not Just CPU Speed

m Data and instructions reside in memory
® To execute an instruction, it must be fetched into the CPU
= Next, the data on the which the instruction operates must be fetched
from memory and brought to the CPU
m CPU <-> Memory bandwidth can limit performance

" Improving performance 1: hardware improvements to increase memory
bandwidth (e.g., DDR - DDR2 - DDR3)

" |mproving performance 2: move less data into/out of the CPU
= Put some “memory” in the CPU chip itself (this is “cache” memory)

Memory 8

University of Washington

Binary Representations

m Base 2 number representation
" Represent 351,,as 0000000101011111, or 101011111,

m Electronic implementation
= Easy to store with bi-stable elements
= Reliably transmitted on noisy and inaccurate wires

3.3V —

2.8V — T N

0.5V — / \\’\f
/—\,/_J

0.0V —

Memory 9

University of Washington

Memory, Data, and Addressing

Preliminaries
Representing information as bits and bytes

Organizing and addressing data in memory
Manipulating data in memory using C

Boolean algebra and bit-level manipulations

University of Washington

Encoding Byte Values

m Binary 00000000, -- 11111111,
= Byte = 8 bits (binary digits) A
: N
* Example: 00101011, = 32+8+2+1 = 43 o Qeo%\@
u . = =
Example: 26,,=16+8+2 = 00101010, 0T 0 T 0000
m Decimal 0,, -- 255, 11110001
. 2 | 2| 0010
m Hexadecimal 00, -- FF 3 |3 1] 0011
: . 4 | 4 | 0100
= Groups of 4 binary digits 5[5[0101
= Byte = 2 hexadecimal (hex) or base 16 digits g’ g’ 8%%(1)
= Base-16 number representation 8 | 8 | 1000
[TaYs [TeYs . (ir’ 9 9 1001
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F A |10 1010
" Write FA1D37B, in C B 1111 1011
C 1121 1100
» 3s OxFA1D37B or Oxfald37/b D |13]| 1101
E [14] 1110
F [15] 1111

Memory 11

University of Washington

What is memory, really?

m How do we find data in memory?

University of Washington

Byte-Oriented Memory Organization

A &

S

m Programs refer to addresses
= Conceptually, a very large array of bytes, each with an address (index)
= System provides an address space private to each “process”

= Process = program being executed + its data + its “state”
= Program can clobber its own data, but not that of others
= Clobbering code or “state” often leads to crashes (or security holes)
m Compiler + run-time system control memory allocation
= Where different program objects should be stored
= All allocation within a single address space

Memory 13

University of Washington

Machine Words

m Machine has a “word size”

®= Nominal size of integer-valued data
= Including addresses

= Until recently, most machines used 32 bits (4 bytes) words
= Limits addresses to 4GB
= Became too small for memory-intensive applications

= More recent and high-end systems use 64 bits (8 bytes) words
= Potential address space = 1.8 X 10%° bytes (18 EB — exabytes)
= x86-64 supports 48-bit physical addresses: 256 TB (terabytes)

® For backward-compatibility, many CPUs support different word sizes
= Always a power-of-2 in the number of bytes: 1, 2, 4, 8§, ...

Memory 14

University of Washington

Word-Oriented Memory Organization
64-bit 32-bit

m Addresses specify Words Words BYtes Addr.
locations of bytes in memory 0000
= Address of first byte in word Adr 0001
= Addresses of successive words Addr i 0002
differ by 4 (32-bit) or 8 (64-bit) - 8882
= Address of word O, 1, .. 10? “ Addr 0005
?? 0006
0007
0008
Ad=dr 0009
Addr i 0010
= 0011
i 0012
Ad=dr 0013
?? 0014
0015

University of Washington

Word-Oriented Memory Organization
64-bit 32-bit

m Addresses specify Words Words BYtes Addr.
locations of bytes in memory 0000
. . Addr
= Address of first byte in word _ 0001
= Addresses of successive words Addr L0020 0002
differ by 4 (32-bit) or 8 (64-bit) . 8882
000
= Address of word O, 1, .. 10? ° Ad=dr 0005
0004 0006
0007
0008
Ad=dr 0009
Addr 0008 0010
= 0011
0008 0012
Ad=dr 0013
0012 0014
0015

University of Washington

Memory, Data, and Addressing

Preliminaries
Representing information as bits and bytes
Organizing and addressing data in memory

Manipulating data in memory using C

Boolean algebra and bit-level manipulations

University of Washington

Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address \

m Address 0004
stores the value 351 (or 15F,)

0000
00 00 01 S5SF| 0004
0008
000C
0010
0014
0018
001C
0020
0024

University of Washington

Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address

m Address 0004 0000
stores the value 351 (or 15F) 00 00 01 SF| 0004

m Pointer to address 0004 0008

stored at address 001C 000C
0010

0014
0018
00 00 00 04| 001C
0020
0024

University of Washington

Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address

m Address 0004

stores the value 351 (or 15F,;) 00 00 Ol SF 8882

m Pointer to address 0004 0008
stored at address 001C 000C

. . 0010

m Pointer to a pointer 0014
in 0024 0018
00 00 00 04| o01C

< 0020

| 00 0000 1C] 0024

University of Washington

Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address

m Address 0004

stores the value 351 (or 15F,;) 00 00 Ol SF 8882

m Pointer to address 0004 0008
stored at address 001C 000C

)) 0010

m Pointer to a pointer 00 00 00 ocCl| 0014
in 0024 0018

s Address 0014 00 00 :00 04] 001C
stores the value 12 < 0 00 00 1 88%2

= |sita pointer?

University of Washington

Data Representations

m Sizes of objects (in bytes)
= Java data type

boolean
byte
char
short
int
float

double
long

(reference)

C data type

bool
char

short int
int

float
long int
double

long long
long double
pointer *

Memory

Typical 32-bit

A 00O 0O OO A D BANNDN PR B

x86-64

0O 0 0 A~ A NN PP P

=
o O

22

University of Washington

Byte Ordering

m How should bytes within multi-byte word be ordered in
memory?

m Say you want to store Oxaabbccdd
= What order will the bytes be stored?

University of Washington

Byte Ordering

m How should bytes within multi-byte word be ordered in
memory?

m Say you want to store Oxaabbccdd
= What order will the bytes be stored?

m Endianness: big endian vs. little endian

= Two different conventions, used by different architectures
= QOrigin: Gulliver’s Travels (see CS:APP2 textbook, section 2.1)

Memory 24

University of Washington

Byte Ordering Example

m Big-Endian (PowerPC, Sun, Internet)
= |Least significant byte has highest address
m Little-Endian (x86)
= Least significant byte has lowest address
m Example

= Variable has 4-byte representation 0x01234567
= Address of variable is 0x100

0x100 Ox101 O0x102 0x103

Big Endian 01| 23 | 45 | 67

0x100 Ox101 O0x102 O0x103

Little Endian 67 145 | 23 | 01

Representing Integers

m int A = 12345;
m int B = -12345;

m long int C

IA32, x86-64 A

39
30
00
00

IA32, x86-64 B

7
CF
FF
FF

= 12345;

Sun A

00
00
30
39

Sun B

FF
FF
CF
7

University of Washington

Decimal:

12345
Binary: 00110000 0011 1001

Hex: 3
1A32 C X86-64 C Sun C
39 | 39
30 | 30
00 | 00
00 | 00
00
00
00
00

Two’s complement representation
for negative integers (covered later)

Memory

26

University of Washington

Memory, Data, and Addressing

Preliminaries

Representing information as bits and bytes
Organizing and addressing data in memory
Manipulating data in memory using C

Boolean algebra and bit-level manipulations

University of Washington

& = ‘address of value’

Addresses and Pointers in C * = ‘value at address’

or ‘dereference’

m Variable declarations

" intx,y;

" Finds two locations in memory in which to store 2 integers (1 word each)
m Pointer declarations use *

" int *ptr;

= Declares a variable ptr that is a pointer to a data item that is an integer
m Assignment to a pointer

" ptr = &x;

= Assigns ptr to point to the address where x is stored

= (stores the address of x in ptr)

Memory 28

University of Washington

& = ‘address of value’

Addresses and Pointers in C * = ‘value at address’

or ‘dereference’

m To use the value pointed to by a pointer we use dereference (*)
= Given a pointer, we can get the value it points to by using the * operator
= *ptris the value at the memory address given by the value of ptr

m Examples
= |f ptr = &x theny = *ptr+1isthesameasy=x+1
= |f ptr =&y theny=*ptr+1isthesameasy=y+1
= Whatis *(&x) equivalent to?

Memory 29

University of Washington

& = ‘address of value’

Addresses and Pointers in C * = Yalue at address’

or ‘dereference’

m We can do arithmetic on pointers
m ptr=ptr+1; //really adds 4: type of ptris int* and an int uses 4 bytes!

= Changes the value of the pointer so that it now points to the next data
item in memory (that may be vy, or it may not — this is dangerous!)

Memory 30

University of Washington

Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700

0000
100 00 00 00f 0004
0008
000C
0010
0014
00 27 DO 3C| 0018
001C
0020
0024

University of Washington

Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700

0000
00 _00 00 00| 0004
0008
000C
0010
0014
00 27 DO 3C| 0018
001C
0020
0024

" intx,y;
X =Yy + 3; //get value at y, add 3, putitin x

University of Washington

Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700

0000
03 27 DO 3C|{ 0004
0008
000C
0010
0014
00 27 DO 3C| 0018
001C
0020
0024

" intx,y;
X =Yy + 3; //get value at y, add 3, putitin x

University of Washington

Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700

0000
00 _00 00 00| 0004
0008
000C
0010
0014
00 27 DO 3C| 0018
001C
0020
0024

" int *x;inty;
x = &y + 3; // get address of y add ??

University of Washington

Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700

0000
24 00 00 00| 0004
0008
000C
0010
0014
00 27 DO 3C| 0018
001C
0020
0024

" int *x;inty;
x =&y + 3; // get address of y add 12
// 0x0018 + 0x000C = 0x0024

University of Washington

Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x at location 0x04, y at 0x18

= x originally 0x0, y originally 0x3CD02700 0000
o 24 00 00 00| 0004

= int*x;inty; 0008
x = &y + 3; // get address of y add 12 000C
// 0x0018 + 0x000C = 0x0024 0010

o | 0014
e s [BZL D03 0018

P 001C

0020

0024

University of Washington

Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x at location 0x04, y at 0x18

= x originally 0x0, y originally 0x3CD02700 0000
o 24 00 00 00| 0004

= int*x;inty; 0008
x = &y + 3; // get address of y add 12 000C
// 0x0018 + 0x000C = 0x0024 0010

o | 0014
oy roms [BZL D] 001

P 001C

0020

|00 27 DO 3C[0024

University of Washington

Arrays

m Arrays represent adjacent locations in memory storing the
same type of data object
= e.g., int big_array[128];
allocates 512 adjacent bytes in memory starting at 0x00ff0000
m Pointer arithmetic can be used for array indexing in C (if
pointer and array have the same type!):

= int *array_ptr;

array_ptr = big_array; 0x00ff0000

array_ptr = &big_array([0]; 0x00ff0000

array_ptr = &big_array(3]; 0x00ff000c

array_ptr = &big_array[0] + 3; Ox00ffO00C (adds 3 * size of int)
array_ptr = big_array + 3; 0x00ffO0O0C (adds 3 * size of int)
*array_ptr = *array_ptr + 1} 0x00ffO00c (but big_array[3] is incremented)
array_ptr = &big_array[130]; 0x00ff0208 (out of bounds, C doesn’t check)

" |n general: &big_arrayl[i] is the same as (big_array + i),
which implicitly computes: &bigarray[0] + i*sizeof(bigarray[0]);

Memory 38

Representing strings
m A C-style string is represented by an array of bytes.

= Elements are one-byte ASCII codes for each character.
= A 0O value marks the end of the array.

32 space | | 48 o] |64 @] |80 P 96) 112 p
33 ! 49 1 65 A | 81 Q| |97 a 113 q
34 ” 50 2| | 66 B| | 82 R 98 b 114 r
35 # 51 31167 C| |83 S 99 C 115 S
36 S 52 4] |68 D| | 84 T 100 d 116 t
37 % 53 51 | 69 E] |85 U 101 e 117 u
38 & 54 6| 170 F| |86 v 102 f 118 v
39 ’ 55 71 |71 Gl |8 W| [103 g 119 w
40 (56 8| |72 HJ| |88 X 104 h 120 X
41) 57 9 73 I 89 Y 105 I 121 y
42 * 58 : 74 J 90 Z 106 j 122 yA
43 + 59 ; 75 K| | 91 [107 k 123 {
44 , 60 < 76 L 92 \ 108 | 124 |
45 - 61 =1 |77 M| |93] 109 m 125 1
46 . 62 >| | 78 N| | 94 " 110 n 126 ~
47 / 63 ? 79 0) 95 _ 111 0 127 del

Memory 39

University of Washington

Null-terminated Strings

m For example, “Harry Potter” can be stored as a 13-byte array.

72 | 97 | 114 114|121 | 32 | 80 | 111 | 116 | 116 101]| 114| O
H a r r y P o] t t e r \0

m Why do we put a 0, or null, at the end of the string?

" Note the special symbol: string[12] = '\0’;

= How do we compute the string length??

Memory 40

University of Washington

Compatibility
char S[6] = "12345";

Linux/Alpha S SunS

31 |¢ 1 31
32 | | 32
33 | " 33
34 | | 34
35 | " 35
00 | | 00

m Byte ordering (endianness) is not an issue for standard C
strings (char arrays)
m Unicode characters — up to 4 bytes/character

= ASCII codes still work (leading 0 bit) but can support the many characters
in all languages in the world

= Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)

Memory 41

University of Washington

Examining Data Representations

m Code to print byte representation of data
= Any data type can be treated as a byte array by casting it to char

void show bytes(char *start, int len) ({
int 1i;
for (1 = 0; i < len; i++)
printf ("$p\t0x%.2x\n", start+i, *(start+i));
printf ("\n") ;
}

void show_int (int x) {
show bytes((char *) &x, sizeof(int));

} printf directives:
%p Print pointer
\t Tab

%X Print value as hex
\n New line

Memory 42

University of Washington

show bytes Execution Example

int a = 12345; // represented as 0x00003039
12345;\n") ;

show lnt(a) b // show bytes ((pointer) &a, sizeof(int));

printf ("int a

Result (Linux):

int a = 12345;

Ox11f£fffcb8 0x39
Ox11f£fffcb9 0x30
Oxl11ffffcba 0x00
Ox11ffffcbb 0x00

University of Washington

Memory, Data, and Addressing

Preliminaries

Representing information as bits and bytes
Organizing and addressing data in memory
Manipulating data in memory using C

Boolean algebra and bit-level manipulations

University of Washington

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0
= AND: A&B=1whenbothAislandBis1
" OR:A|B=1wheneitherAislorBis1
= XOR: AMB =1 when either Ais 1 or Bis 1, but not both
= NOT: ~A =1 when Ais 0 and vice-versa
= DeMorgan’s Law: ~(A | B)=~A & ~B

&[0 1 | |0 1 01 ~|
ojloo ofo 1 JEE 01
1]0 1 11 1 110 1]0

Memory 45

University of Washington

Manipulating Bits

m Boolean operators can be applied to bit vectors: operations
are applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111100 10101010

Memory 46

University of Washington

Bit-Level Operations in C

m Bitwise operators &, |, A, ~ are available in C
= Apply to any “integral” data type
= long, 1int, short, char
= Arguments are treated as bit vectors
= QOperations applied bitwise
m Examples:
char a, b, c¢;

a = (char)0x41; // 0x41 -> 01000001,
b = ~a; // 10111110, -> OxBE
a = (char)O0; // 0x00 -> 00000000,
b = ~a; // 11111111, -> OxFF
a = (char)0x69; // 0x41 -> 01101001,
b = (char)0x55; // 0x55 -> 01010101,
c =a & b; // 01000001, -> 0Ox41

Memory 47

University of Washington

Contrast: Logic Operations in C

m Logical operatorsinC: &&, ||, !
= Behavior:
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor 1
= Farly termination (&& and | |)

m Examples (char data type)

= 10x41 --> 0x00
= 10x00 --> 0x01
" 0x69 && 0Ox55 --> 0x01
" 0x00 && Ox55 --> 0x00
" 0x069 || Oxb55 --> 0x01
" p && *pt++t (avoids null pointer access: null pointer = 0x00000000)

shortfor: 1f (p) { *p++; }

Memory 48

University of Washington

Representing & Manipulating Sets

m Bit vectors can be used to represent sets
= Width w bit vector represents subsets of {0, ..., w-1}

" a,=1ifj €A — each bitin the vector represents the absence (0) or
presence (1) of an element in the set

01101001 {0,3,5,6}
76543210
01010101 {0,2,4,6}
716543210
m Operations
= & Intersection 01000001 {0O,6}
= Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Memory 49

University of Washington

m Slides past this point not used

Memory 50

University of Washington

Reading Byte-Reversed Listings

m Disassembly

= Text representation of binary machine code

= Generated by program that reads the machine code
m Example instruction in memory

= add value Ox12ab to register ‘ebx’ (a special location in CPU’s memory)

Address Instruction Code Assembly Rendition
8048366: 81c¢3ab 120000 add $0x12ab,%ebx

University of Washington

Reading Byte-Reversed Listings

m Disassembly
= Text representation of binary machine code
= Generated by program that reads the machine code

m Example instruction in memory

= add value Ox12ab to register ‘ebx’ (a special location in CPU’s memory)

Address Instruction Code Assembly Rendition
8048366: 81 c¢3ab 120000 add $0x12ab,%ebx

Deciphering numbers

m Value: Ox12ab
m Pad to 32 bits: 0x000012ab
m Split into bytes: 000012 ab
m Reverse (little-endian): ab 12 00 00

Memory 52

University of Washington

Representing Pointers

m int B = -12345;
m int *P = &B;

Sun P IA32P x86-64 P

EF D4 0C
FF F8 89
FB FF EC
2C BF FF
FF
7F
00
00

Different compilers & machines assign different locations to objects

Memory 53

