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Memory & data
Road ma p Integers & floats
C: Java: Machine code & C
: : x86 assembly
car *c = malloc(sizeof(car)); | |Car ¢ = new Car(); Procedures & stacks
c->miles = 100; c.setMiles (100) ; Arrays & structs
c->gals = 17; S ECHER B § Memory & caches
float mpg = get mpg(c) ; float mpg = y
free (c) ; c.getMPG () ; Processes
- — Virtual memory
Assembly get mpg: Memory allocation
language: pushg %rbp Java vs. C

movq %rsp, S%rbp
popq $rbp

ret
v

Machine 0111010000011000
de- 100011010000010000000010
coae. 1000100111000010
110000011111101000011111
Computer

system:

Preliminaries
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Memory, Data, and Addressing

Preliminaries
Representing information as bits and bytes

Organizing and addressing data in memory
Manipulating data in memory using C

Boolean algebra and bit-level manipulations

m Reading: Bryant/O’Hallaron sec. 2.1



Hardware: Logical View

CPU

Memory

Etc.

University of Washington
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Hardware: Semi-Logical View

Intel* Core™2 Duo Processor
Intel® Core™2 Quad Processor

|10.6 GB/s

PCl Expres.s‘ 2.0 16 lanes
Graphics 16 GB/s

DDR2 or DDR3
6.4 GB/s or 8.5 GB/s
DDRZ2 or DDR3

or
PCl Express* 2.0 { 8 lanes
Graphics 8 GB/s
PCl Express* 2.0
Graphics

6.4 GB/s or 8.5 GB/s

Intel* High
Definition Audio
Intel* Quiet System

Technology

2 6 Serial ATA Ports; eSATA;
Port Disable

8 lanes
‘SGB/S

2 GB/s| DMI

12 Hi-Speed USB 2.0 Ports; slaels
Dual EHCI; USB Port Disable BRI

500

MB/s
each x1

6 PCl Express” x1

Intel® Integrated

10/100/1000 MAC Intel* Matrix

LPC Jor SPI Storage Technology

Intel® Turbo Memory

Intel® Gigabit LAN Connect BIOS Support with User Pinning

Intel* Extreme Tuning
Support B - Optional

Intel® P45 Express Chipset Block Diagram

J

Memory
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Hardware: Physical View

PCl-Express Slots
1 PCI-E X16, 2 PCI-E X1 Back Panel Connectors

PCI Slots |

Socket 775
Core2 Quad/
Core2 Extreme
Ready

Intel P45
Chipset

Intel ICH10

Chipset DDR2

1066+MHz
Dual Channel
Memory Slots

Serial ATA
Headers

Parallel Port RJ-45 Gigabit LAN Pont

PS/2 Mouse

Port Audio Ports

PS/2 Keyboard
Port

Senal Port USB 2.0 Ports
Memory
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CPU “Memory”: Registers and Instruction Cache

Transparent
(hw controlled)
instruction
caching

Registers

Instruction

%
Cache Memory

Program
controlled
data
movement

o There are a fixed number of registers in the CPU
o Registers hold data
o Thereis an I-cache in the CPU that holds recently fetched instructions

o If you execute a loop that fits in the cache, the CPU goes to memory for
those instructions only once, then executes it out of its cache

o This slide is just an introduction.
We'll see a fuller explanation later in the course.

Memory 7
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Performance: It's Not Just CPU Speed

m Data and instructions reside in memory
® To execute an instruction, it must be fetched into the CPU
= Next, the data on the which the instruction operates must be fetched
from memory and brought to the CPU
m CPU <-> Memory bandwidth can limit performance

" Improving performance 1: hardware improvements to increase memory
bandwidth (e.g., DDR - DDR2 - DDR3)

" |mproving performance 2: move less data into/out of the CPU
= Put some “memory” in the CPU chip itself (this is “cache” memory)

Memory 8
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Binary Representations

m Base 2 number representation
" Represent 351,,as 0000000101011111, or 101011111,

m Electronic implementation
= Easy to store with bi-stable elements
= Reliably transmitted on noisy and inaccurate wires

3.3V —

2.8V — T N

0.5V — / \\’\f
/—\,/\_J

0.0V —

Memory 9



University of Washington

Memory, Data, and Addressing

Preliminaries
Representing information as bits and bytes

Organizing and addressing data in memory
Manipulating data in memory using C

Boolean algebra and bit-level manipulations
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Encoding Byte Values

m Binary 00000000, -- 11111111,
= Byte = 8 bits (binary digits) A
: N
* Example: 00101011, = 32+8+2+1 = 43 o Qeo%\@
u . = =
Example: 26,,=16+8+2 = 00101010, 0T 0 T 0000
m Decimal 0,, -- 255, 11110001
. 2 | 2| 0010
m Hexadecimal 00, -- FF 3 |3 1] 0011
: . 4 | 4 | 0100
= Groups of 4 binary digits 5[ 5[ 0101
= Byte = 2 hexadecimal (hex) or base 16 digits g’ g’ 8%%(1)
= Base-16 number representation 8 | 8 | 1000
[TaYs [TeYs . (ir’ 9 9 1001
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F A |10 1010
" Write FA1D37B, in C B 1111 1011
C 1121 1100
» 3s OxFA1D37B or Oxfald37/b D |13]| 1101
E [14] 1110
F [15] 1111

Memory 11
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What is memory, really?

m How do we find data in memory?
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Byte-Oriented Memory Organization

A &

S

m Programs refer to addresses
= Conceptually, a very large array of bytes, each with an address (index)
= System provides an address space private to each “process”

= Process = program being executed + its data + its “state”
= Program can clobber its own data, but not that of others
= Clobbering code or “state” often leads to crashes (or security holes)
m Compiler + run-time system control memory allocation
= Where different program objects should be stored
= All allocation within a single address space

Memory 13



University of Washington

Machine Words

m Machine has a “word size”

®= Nominal size of integer-valued data
= Including addresses

= Until recently, most machines used 32 bits (4 bytes) words
= Limits addresses to 4GB
= Became too small for memory-intensive applications

= More recent and high-end systems use 64 bits (8 bytes) words
= Potential address space = 1.8 X 10%° bytes (18 EB — exabytes)
= x86-64 supports 48-bit physical addresses: 256 TB (terabytes)

® For backward-compatibility, many CPUs support different word sizes
= Always a power-of-2 in the number of bytes: 1, 2, 4, 8§, ...

Memory 14
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Word-Oriented Memory Organization
64-bit 32-bit

m Addresses specify Words  Words  BYtes Addr.
locations of bytes in memory 0000
= Address of first byte in word Adr 0001
= Addresses of successive words Addr i 0002
differ by 4 (32-bit) or 8 (64-bit) - 8882
= Address of word O, 1, .. 10? “ Addr 0005
?? 0006
0007
0008
Ad=dr 0009
Addr i 0010
= 0011
i 0012
Ad=dr 0013
?? 0014
0015
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Word-Oriented Memory Organization
64-bit 32-bit

m Addresses specify Words  Words  BYtes Addr.
locations of bytes in memory 0000
. . Addr
= Address of first byte in word _ 0001
= Addresses of successive words Addr L0020 0002
differ by 4 (32-bit) or 8 (64-bit) . 8882
000
= Address of word O, 1, .. 10? ° Ad=dr 0005
0004 0006
0007
0008
Ad=dr 0009
Addr 0008 0010
= 0011
0008 0012
Ad=dr 0013
0012 0014
0015
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Memory, Data, and Addressing

Preliminaries
Representing information as bits and bytes
Organizing and addressing data in memory

Manipulating data in memory using C

Boolean algebra and bit-level manipulations
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Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address \

m Address 0004
stores the value 351 (or 15F,)

0000
00 00 01 S5SF| 0004
0008
000C
0010
0014
0018
001C
0020
0024
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Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address

m Address 0004 0000
stores the value 351 (or 15F) 00 00 01 SF| 0004

m Pointer to address 0004 0008

stored at address 001C 000C
0010

0014
0018
00 00 00 04| 001C
0020
0024




University of Washington

Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address

m Address 0004

stores the value 351 (or 15F,;) 00 00 Ol SF 8882

m Pointer to address 0004 0008
stored at address 001C 000C

. . 0010

m Pointer to a pointer 0014
in 0024 0018
00 00 00 04| o01C

< 0020

| 00 0000 1C] 0024
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Addresses and Pointers

m Address is a location in memory

m Pointer is a data object
that contains an address

m Address 0004

stores the value 351 (or 15F,;) 00 00 Ol SF 8882

m Pointer to address 0004 0008
stored at address 001C 000C

) ) 0010

m Pointer to a pointer 00 00 00 ocCl| 0014
in 0024 0018

s Address 0014 00 00 :00 04] 001C
stores the value 12 < 0 00 00 1 88%2

= |sita pointer?
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Data Representations

m Sizes of objects (in bytes)
= Java data type

boolean
byte
char
short
int
float

double
long

(reference)

C data type

bool
char

short int
int

float
long int
double

long long
long double
pointer *

Memory

Typical 32-bit

A 00O 0O OO A D BANNDN PR B

x86-64

0O 0 0 A~ A NN PP P

=
o O

22
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Byte Ordering

m How should bytes within multi-byte word be ordered in
memory?

m Say you want to store Oxaabbccdd
= What order will the bytes be stored?
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Byte Ordering

m How should bytes within multi-byte word be ordered in
memory?

m Say you want to store Oxaabbccdd
= What order will the bytes be stored?

m Endianness: big endian vs. little endian

= Two different conventions, used by different architectures
= QOrigin: Gulliver’s Travels (see CS:APP2 textbook, section 2.1)

Memory 24
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Byte Ordering Example

m Big-Endian (PowerPC, Sun, Internet)
= |Least significant byte has highest address
m Little-Endian (x86)
= Least significant byte has lowest address
m Example

= Variable has 4-byte representation 0x01234567
= Address of variable is 0x100

0x100 Ox101 O0x102 0x103

Big Endian 01| 23 | 45 | 67

0x100 Ox101 O0x102 O0x103

Little Endian 67 145 | 23 | 01




Representing Integers

m int A = 12345;
m int B = -12345;

m long int C

IA32, x86-64 A

39
30
00
00

IA32, x86-64 B

7
CF
FF
FF

= 12345;

Sun A

00
00
30
39

Sun B

FF
FF
CF
7

University of Washington

Decimal:

12345
Binary: 00110000 0011 1001

Hex: 3
1A32 C X86-64 C Sun C
39 | 39
30 | 30
00 | 00
00 | 00
00
00
00
00

Two’s complement representation
for negative integers (covered later)

Memory

26
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Memory, Data, and Addressing

Preliminaries

Representing information as bits and bytes
Organizing and addressing data in memory
Manipulating data in memory using C

Boolean algebra and bit-level manipulations
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& = ‘address of value’

Addresses and Pointers in C * = ‘value at address’

or ‘dereference’

m Variable declarations

" intx,y;

" Finds two locations in memory in which to store 2 integers (1 word each)
m Pointer declarations use *

" int *ptr;

= Declares a variable ptr that is a pointer to a data item that is an integer
m Assignment to a pointer

" ptr = &x;

= Assigns ptr to point to the address where x is stored

= (stores the address of x in ptr)

Memory 28
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& = ‘address of value’

Addresses and Pointers in C * = ‘value at address’

or ‘dereference’

m To use the value pointed to by a pointer we use dereference (*)
= Given a pointer, we can get the value it points to by using the * operator
= *ptris the value at the memory address given by the value of ptr

m Examples
= |f ptr = &x theny = *ptr+1isthesameasy=x+1
= |f ptr =&y theny=*ptr+1isthesameasy=y+1
= Whatis *(&x) equivalent to?

Memory 29
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& = ‘address of value’

Addresses and Pointers in C * = Yalue at address’

or ‘dereference’

m We can do arithmetic on pointers
m ptr=ptr+1; //really adds 4: type of ptris int* and an int uses 4 bytes!

= Changes the value of the pointer so that it now points to the next data
item in memory (that may be vy, or it may not — this is dangerous!)

Memory 30
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Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700

0000
100 00 00 00f 0004
0008
000C
0010
0014
00 27 DO 3C| 0018
001C
0020
0024
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Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700

0000
00 _00 00 00| 0004
0008
000C
0010
0014
00 27 DO 3C| 0018
001C
0020
0024

" intx,y;
X =Yy + 3; //get value at y, add 3, putitin x




University of Washington

Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700

0000
03 27 DO 3C|{ 0004
0008
000C
0010
0014
00 27 DO 3C| 0018
001C
0020
0024

" intx,y;
X =Yy + 3; //get value at y, add 3, putitin x
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Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700

0000
00 _00 00 00| 0004
0008
000C
0010
0014
00 27 DO 3C| 0018
001C
0020
0024

" int *x;inty;
x = &y + 3; // get address of y add ??




University of Washington

Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x at location 0x04, y at 0x18
= x originally 0x0, y originally 0x3CD02700

0000
24 00 00 00| 0004
0008
000C
0010
0014
00 27 DO 3C| 0018
001C
0020
0024

" int *x;inty;
x =&y + 3; // get address of y add 12
// 0x0018 + 0x000C = 0x0024
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Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x at location 0x04, y at 0x18

= x originally 0x0, y originally 0x3CD02700 0000
o 24 00 00 00| 0004

= int*x;inty; 0008
x = &y + 3; // get address of y add 12 000C
// 0x0018 + 0x000C = 0x0024 0010

o | 0014
e s [BZL D03 0018

P 001C

0020

0024
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Assignment in C

m Left-hand-side = right-hand-side
® LHS must evaluate to a memory LOCATION
= RHS must evaluate to a VALUE (could be an address)

m E.g., x at location 0x04, y at 0x18

= x originally 0x0, y originally 0x3CD02700 0000
o 24 00 00 00| 0004

= int*x;inty; 0008
x = &y + 3; // get address of y add 12 000C
// 0x0018 + 0x000C = 0x0024 0010

o | 0014
oy roms [BZL D] 001

P 001C

0020

|00 27 DO 3C[ 0024
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Arrays

m Arrays represent adjacent locations in memory storing the
same type of data object
= e.g., int big_array[128];
allocates 512 adjacent bytes in memory starting at 0x00ff0000
m Pointer arithmetic can be used for array indexing in C (if
pointer and array have the same type!):

= int *array_ptr;

array_ptr = big_array; 0x00ff0000

array_ptr = &big_array([0]; 0x00ff0000

array_ptr = &big_array(3]; 0x00ff000c

array_ptr = &big_array[0] + 3; Ox00ffO00C (adds 3 * size of int)
array_ptr = big_array + 3; 0x00ffO0O0C (adds 3 * size of int)
*array_ptr = *array_ptr + 1} 0x00ffO00c (but big_array[3] is incremented)
array_ptr = &big_array[130]; 0x00ff0208 (out of bounds, C doesn’t check)

" |n general: &big_arrayl[i] is the same as (big_array + i),
which implicitly computes: &bigarray[0] + i*sizeof(bigarray[0]);

Memory 38



Representing strings
m A C-style string is represented by an array of bytes.

= Elements are one-byte ASCII codes for each character.
= A 0O value marks the end of the array.

32 space | | 48 o] |64 @] |80 P 96 ) 112 p
33 ! 49 1 65 A | 81 Q| |97 a 113 q
34 ” 50 2| | 66 B| | 82 R 98 b 114 r
35 # 51 31167 C| |83 S 99 C 115 S
36 S 52 4] |68 D| | 84 T 100 d 116 t
37 % 53 51 | 69 E] |85 U 101 e 117 u
38 & 54 6| 170 F| |86 v 102 f 118 v
39 ’ 55 71 |71 Gl |8 W| [103 g 119 w
40 ( 56 8| |72 HJ| |88 X 104 h 120 X
41 ) 57 9 73 I 89 Y 105 I 121 y
42 * 58 : 74 J 90 Z 106 j 122 yA
43 + 59 ; 75 K| | 91 [ 107 k 123 {
44 , 60 < 76 L 92 \ 108 | 124 |
45 - 61 =1 |77 M| |93 ] 109 m 125 1
46 . 62 >| | 78 N| | 94 " 110 n 126 ~
47 / 63 ? 79 0) 95 _ 111 0 127 del

Memory 39



University of Washington

Null-terminated Strings

m For example, “Harry Potter” can be stored as a 13-byte array.

72 | 97 | 114 114|121 | 32 | 80 | 111 | 116 | 116 101 ]| 114| O
H a r r y P o] t t e r \0

m Why do we put a 0, or null, at the end of the string?

" Note the special symbol: string[12] = '\0’;

= How do we compute the string length??

Memory 40
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Compatibility
char S[6] = "12345";

Linux/Alpha S SunS

31 |¢ 1 31
32 | | 32
33 | " 33
34 | | 34
35 | " 35
00 | | 00

m Byte ordering (endianness) is not an issue for standard C
strings (char arrays)
m Unicode characters — up to 4 bytes/character

= ASCII codes still work (leading 0 bit) but can support the many characters
in all languages in the world

= Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)

Memory 41
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Examining Data Representations

m Code to print byte representation of data
= Any data type can be treated as a byte array by casting it to char

void show bytes(char *start, int len) ({
int 1i;
for (1 = 0; i < len; i++)
printf ("$p\t0x%.2x\n", start+i, *(start+i));
printf ("\n") ;
}

void show_int (int x) {
show bytes( (char *) &x, sizeof(int));

} printf directives:
%p  Print pointer
\t Tab

%X Print value as hex
\n New line

Memory 42
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show bytes Execution Example

int a = 12345; // represented as 0x00003039
12345;\n") ;

show lnt(a) b // show bytes ((pointer) &a, sizeof(int));

printf ("int a

Result (Linux):

int a = 12345;

Ox11f£fffcb8 0x39
Ox11f£fffcb9 0x30
Oxl11ffffcba 0x00
Ox11ffffcbb 0x00
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Memory, Data, and Addressing

Preliminaries

Representing information as bits and bytes
Organizing and addressing data in memory
Manipulating data in memory using C

Boolean algebra and bit-level manipulations
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Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0
= AND: A&B=1whenbothAislandBis1
" OR:A|B=1wheneitherAislorBis1
= XOR: AMB =1 when either Ais 1 or Bis 1, but not both
= NOT: ~A =1 when Ais 0 and vice-versa
= DeMorgan’s Law: ~(A | B)=~A & ~B

&[0 1 | |0 1 01 ~|
ojloo ofo 1 JEE 01
1]0 1 11 1 110 1]0

Memory 45
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Manipulating Bits

m Boolean operators can be applied to bit vectors: operations
are applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111100 10101010

Memory 46
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Bit-Level Operations in C

m Bitwise operators &, |, A, ~ are available in C
= Apply to any “integral” data type
= long, 1int, short, char
= Arguments are treated as bit vectors
= QOperations applied bitwise
m Examples:
char a, b, c¢;

a = (char)0x41; // 0x41 -> 01000001,
b = ~a; // 10111110, -> OxBE
a = (char)O0; // 0x00 -> 00000000,
b = ~a; // 11111111, -> OxFF
a = (char)0x69; // 0x41 -> 01101001,
b = (char)0x55; // 0x55 -> 01010101,
c =a & b; // 01000001, -> 0Ox41

Memory 47
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Contrast: Logic Operations in C

m Logical operatorsinC: &&, ||, !
= Behavior:
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor 1
= Farly termination (&& and | |)

m Examples (char data type)

= 10x41 -->  0x00
= 10x00 -->  0x01
" 0x69 && 0Ox55 --> 0x01
" 0x00 && Ox55 -->  0x00
" 0x069 || Oxb55 --> 0x01
" p && *pt++t (avoids null pointer access: null pointer = 0x00000000)

shortfor: 1f (p) { *p++; }

Memory 48
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Representing & Manipulating Sets

m Bit vectors can be used to represent sets
= Width w bit vector represents subsets of {0, ..., w-1}

" a,=1ifj €A — each bitin the vector represents the absence (0) or
presence (1) of an element in the set

01101001 {0,3,5,6}
76543210
01010101 {0,2,4,6}
716543210
m Operations
= & Intersection 01000001 {0O,6}
= Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~  Complement 10101010 {1,3,5,7}

Memory 49
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m Slides past this point not used

Memory 50
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Reading Byte-Reversed Listings

m Disassembly

= Text representation of binary machine code

= Generated by program that reads the machine code
m Example instruction in memory

= add value Ox12ab to register ‘ebx’ (a special location in CPU’s memory)

Address Instruction Code Assembly Rendition
8048366: 81c¢3ab 120000 add $0x12ab,%ebx
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Reading Byte-Reversed Listings

m Disassembly
= Text representation of binary machine code
= Generated by program that reads the machine code

m Example instruction in memory

= add value Ox12ab to register ‘ebx’ (a special location in CPU’s memory)

Address Instruction Code Assembly Rendition
8048366: 81 c¢3ab 120000 add $0x12ab,%ebx

Deciphering numbers

m Value: Ox12ab
m Pad to 32 bits: 0x000012ab
m Split into bytes: 000012 ab
m Reverse (little-endian): ab 12 00 00

Memory 52
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Representing Pointers

m int B = -12345;
m int *P = &B;

Sun P IA32P x86-64 P

EF D4 0C
FF F8 89
FB FF EC
2C BF FF
FF
7F
00
00

Different compilers & machines assign different locations to objects

Memory 53



