University of Washington

Computer Systems

CSE 410 Autumn 2013
3 - Integers

02 April 2012 Integers 1

University of Washington

R d Memory & data
oadimada p Integers & floats
Machine code & C
C: Java: x86 assembly
car *c = malloc(sizeof(car)); | |Car ¢ = new Car(); Procedures & stacks
c->miles = 100; c.setMiles (100) ; Arrays & structs
c->gals = 17; c.setGals (17) ; Memory & caches
float mpg = get mpg(c) ; float mpg = Processes
free (c) ; c.getMPG() ; Virtual memory
~ & Memory allocation
Assembly get _mpg: Java vs. C
. pushqg srbp
Ianguage' movq $rsp, %rbp
popq %rbp
ret $
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer
system:

Encoding

University of Washington

Integer & Floating Point Numbers

Representation of integers: unsighed and signed

Unsigned and signed integers in C
Arithmetic and shifting
Sign extension

Background: fractional binary numbers
IEEE floating-point standard
Floating-point operations and rounding

Floating-point in C

m Reading: Bryant/O’Hallaron sec. 2.2-2.3

University of Washington

Unsigned Integers

m Unsigned values are just what you expect
" b,b.b.b,bsb,bb,=b,27+b.26+b.25+ ... + b2 + b,2°

. : Ja- N-1— 9N _
Interesting aside: 1+2+4+8+...42 2N -1 00111111 53
+00000001 | |+ 1
m You add/subtract them using the normal 01000000 64

“carry/borrow” rules, just in binary

m An important use of unsigned integers in C is pointers

" There are no negative memory addresses

02 April 2012 Integers

University of Washington

Signed Integers

m Let's do the natural thing for the positives
= They correspond to the unsigned integers of the same value
= Example (8 bits): 0x00 =0, 0x01 =1, ..., Ox7F = 127

m But, we need to let about half of them be negative

= Use the high order bit to indicate negative: call it the “sign bit”
= Call this a “sign-and-magnitude” representation

= Examples (8 bits):
= 0x00 = 00000000, is non-negative, because the sign bit is O
= Ox7F=01111111, is non-negative
= Ox85 =10000101, is negative
= 0x80 = 10000000, is negative...

Integers

Sign-and-Magnitude Negatives

m How should we represent -1 in binary?

= Sign-and-magnitude: 10000001,
Use the MSB for + or -, and the other bits to give magnitude

Integers

Sign-and-Magnitude Negatives

m How should we represent -1 in binary?

= Sign-and-magnitude: 10000001,
Use the MSB for + or -, and the other bits to give magnitude
(Unfortunate side effect: there are two representations of 0!)

Integers

Sign-and-Magnitude Negatives

m How should we represent -1 in binary?

= Sign-and-magnitude: 10000001,
Use the MSB for + or -, and the other bits to give magnitude
(Unfortunate side effect: there are two representations of 0!)

= Another problem: math is cumbersome

= Example:
4-31=4+(-3)
0100
+1011
1111

Integers

University of Washington

Two’s Complement Negatives

m How should we represent -1 in binary?
= Rather than a sign bit, let MSB have same value, but negative weight
= W-bit word: Bits 0, 1, ..., W-2 add 29, 2%, ..., 2W-2 to value of integer
when set, but bit W-1 adds -2W-1 when set
= e.g. unsigned 1010,: 1*23+0*22 + 1*21+0*2°=10,,
2’s comp. 1010,: -1*23 + 0*%22 + 1*21 + 0*20=-6,
= So -1represented as 1111,; all
negative integers still have MSB = 1

= Advantages of two’s complement:
only one zero, simple arithmetic

" To get negative representation of
any integer, take bitwise complement
and then add one!

~x + 1 = -x

Integers

University of Washington

Two’s Complement Arithmetic

m The same addition procedure works for both unsigned and
two’s complement integers
= Simplifies hardware: only one adder needed
= Algorithm: simple addition, discard the highest carry bit
= Called “modular” addition: result is sum modulo 2%

m Examples:

4 0100 0100 — 4 1100

+ 3 + 0011 + 1101 + 3 + 0011

=7 =0111 =1 1 0001 -1 1111
drop carry = 0001

University of Washington

Two’s Complement

m Why does it work?

= Put another way: given the bit representation of a positive integer, we
want the negative bit representation to always sum to O (ignoring the
carry-out bit) when added to the positive representation

= This turns out to be the bitwise complement plus one
= What should the 8-bit representation of -1 be?

00000001

+2?272?2?2?2?2?2 (we want whichever bit string gives the right result)
00000000
00000010 00000011

+2777777772727 + 2777777772727

00000000 00000000

Integers

University of Washington

Two’s Complement

m Why does it work?

= Put another way: given the bit representation of a positive integer, we
want the negative bit representation to always sum to O (ignoring the
carry-out bit) when added to the positive representation

= This turns out to be the bitwise complement plus one
= What should the 8-bit representation of -1 be?

00000001

+11111111 (we want whichever bit string gives the right result)
00000000
00000010 00000011

+2777777772727 + 2777777772727

00000000 00000000

Integers

University of Washington

Two’s Complement

m Why does it work?

= Put another way: given the bit representation of a positive integer, we
want the negative bit representation to always sum to O (ignoring the
carry-out bit) when added to the positive representation

= This turns out to be the bitwise complement plus one
= What should the 8-bit representation of -1 be?

00000001

+11111111 (we want whichever bit string gives the right result)
00000000
00000010 00000011

+11111110 +11111101
00000000 00000000

Integers

University of Washington

Unsigned & Signed Numeric Values

X_tUnsignedl Signed | | poth signed and unsigned integers
0000 v L have limits
0001 1 1 . If you compute a number that is too
0010 2 2 big, you wrap: 6+4=? 15U +2U =7
0011 3 3
0100 2 2 « If you compute a number that is too
101 = c small, you wrap: -7-3=? 0U-2U="7?
0110 6 6 « Answers are only correct mod 2P
0111 7 7
1000 8 =8 « The CPU may be capable of “throwing
1001 9 —7/ an exception” for overflow on signed
1010 10 —6 values
1011 11 -5
1100 12 1 o Itwon't for unsigned
1101 13 3 « But Cand Java just cruise along silently
1110 14 —2 when overflow occurs...
1111 15 -1

02 April 2012 Integers 14

m Same W bits interpreted as signed vs. unsigned:

Visualizations
Two’ s 27
complement
+2W—1 - 2W—1
0 -0
_ow- Unsigned

2W

2W—1

0
Unsigned

University of Washington

Two’s
complement

T +2W—1

10

- w1

m Two’s complement (signed) addition: x and y are W bits wide

X+Yy
+2w Positive overflow
+2W-1T T +2v-1
0 10
_2W—1 - _2W—1

Negative overflow

Integers

University of Washington

Numeric Ranges

m Unsigned Values m Two’s Complement Values

= UMin = 0 = TMin = A
= 000...0 = 100...0

= UMax = 2¥ -1 = TMax = 2wl-1
= 111...1 = 011...1

m Other Values
" Negative 1
= 111..1 OXFFFFFFFF (32 bits)
Values for W =16

Decimal Hex Binary
UMax 65535| FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768(80 00| 10000000 00000000
-1 -1| FF FF| 11111111 11111111
0 0 00 00| 00000000 0OOOOOOO

Integers

University of Washington

Integer & Floating Point Numbers

Representation of integers: unsigned and signed
Unsighed and signed integers in C

Arithmetic and shifting

Sign extension

Background: fractional binary numbers
IEEE floating-point standard
Floating-point operations and rounding

Floating-point in C

University of Washington

Values for Different Word Sizes

W
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax | 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128| -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = #include <limits.h>
= Asymmetric range = Declares constants, e.g.,
" UMax = 2*TMax+1 = ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values are platform specific
® See: /usr/include/limits.h on Linux

02 April 2012 Integers %g

University of Washington

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers

= Use “U” suffix to force unsigned:
= 0U, 42949672590

Integers in C

University of Washington

Signed vs. Unsighed in C

m Casting

= int tx, ty;
» unsigned ux, uy;

= Explicit casting between signed & unsigned:
= tx = (int) ux;
= uy = (unsigned) ty;

= Implicit casting also occurs via assighnments and function calls:
= tx = ux;
= uy = ty;
= The gcc flag -Wsign-conversion produces warnings for implicit casts,

but -Wall does not!

" How does casting between signed and unsigned work — what values are
going to be produced?

= Bits are unchanged, just interpreted differently!

Integers in C

Casting Surprises

m Expression Evaluation

= |f you mix unsigned and signed in a single expression, then
signed values implicitly cast to unsigned

® Including comparison operations <, >, ==, <=, >=

= Examples for W=32: TMIN =-2,147,483,648 TMAX =2,147,483,647

m Constant,; Constant, Relation Evaluation
0 ouU == unsigned
-1 0 < signed
-1 ouU > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

02 April 2012 Integers 21

University of Washington

Integer & Floating Point Numbers

Representation of integers: unsigned and signed
Unsigned and signed integers in C

Arithmetic and shifting

Sign extension

Background: fractional binary numbers
IEEE floating-point standard
Floating-point operations and rounding

Floating-point in C

Shifting and Sign Extension

University of Washington

Shift Operations for unsigned integers

m Left shift: X<<y X 00000110
= Shift bit-vector x left by y positions

_ << 3 00110000
= Throw away extra bits on left

= Fill with Os on right >> 2 00000001

m Rightshift: x>>y
= Shift bit-vector x right by y positions

= Throw away extra bits on right
= Fill with Os on left X 11110010

<< 3 10010000

>> 2 00111100

Shifting and Sign Extension

University of Washington

Shift Operations for signed integers

m Left shift: X<<y X 01100010
= Equivalentt Itiplying by 2Y
quivaient to MUttipiying by << 3 00010000
= (if resulting value fits, no 1s are lost)
= Logical shift (for unsigned values) Arithmetic >>2 | 00011000
= Fill with Os on left
= Arithmetic shift (for signed values)
= Replicate most significant bit on left X 10100010
= Maintains sign of x << 3 00010000

= Equivalent to dividing by 2Y
AUIVaTENt to AIVIAing By | Logical >>2 | 00101000
= Correct rounding (towards 0) requires

some care with signed numbers Arithmetic>>2 | 11101000

Undefined behavior when
y<0oryz2zword _size

Shifting and Sign Extension

University of Washington

Using Shifts and Masks

m Extract 2nd most significant byte of an integer
= First shift: X>>(2*8)
" Then mask: (x >> 16) & OxFF

X 01100001{01100010{01100011 01100100

X>>16 00000000 00000000 01100001101100010

00000000 00000000 00000000 11111111
00000000 00000000 00000000 01100010

(x >>16) & OxFF

m Extracting the sign bit
" (x>>31)&1 -needthe “& 1” to clear out all other bits except LSB

m Conditionals as Boolean expressions (assuming x is 0 or 1)
= if (x) a=y else a=z; whichisthesameas a=x?y:z
" Can bere-writtenas: a=((x<<31)>>31)&y+(Ix<<31)>>31) &7z

02 April 2012 Integers 25

University of Washington

Sign Extension

m Task:
= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value
m Rule:
= Make k copies of sign bit:
" X = Xy g Xy s X

sy Apy=17
| J

Xy s Xg

w-1"/

k copies of MSB < w >

«— i >< w >

02 April 2012 Integers 26

University of Washington

Sign Extension Example

m Converting from smaller to larger integer data type
m C automatically performs sign extension

short int x = 12345;

int ix = (int) x;

short int y = -12345;

int i1y = (int) vy;

Decimal Hex Binary

X 12345 30 39 00110000 01101101
ix 12345 00 00 30 39 00000000 00000000 00110000 01101101
N -12345 CF C7 11001111 11000111
iy -12345| FF FF CF C7 11111111 11111111 11001111 11000111

02 April 2012 Integers 27

