University of Washington

Computer Systems

CSE 410 Autumn 2013
4 — Floating Point

02 April 2012 Floating Point 1

University of Washington

Integer & Floating Point Numbers

Representation of integers: unsigned and signed
Unsigned and signed integers in C

Arithmetic and shifting

Sign extension

Background: fractional binary numbers

IEEE floating-point standard
Floating-point operations and rounding

Floating-point in C

m Reading: Bryant/O’Hallaron sec. 2.4

University of Washington

Fractional Binary Numbers

m Whatis 1011.101,?

m How do we interpret fractional decimal numbers?
" e.g.107.95,,
= Can we interpret fractional binary numbers in an analogous way?

Fractional Values

University of Washington

Fractional Binary Numbers
21’

m Representation

= Bits to right of “binary point” represent fractional powers of 2
= Represents rational number: i
k=—j

Fractional Values

University of Washington

Fractional Binary Numbers: Examples

m Value Representation
" 5and3/4 101.11,
"= 2and7/8 10.111,
= 63/64 0.111111,

m Observations
= Divide by 2 by shifting right
= Multiply by 2 by shifting left
= Numbers of the form 0.111111.., are just below 1.0
= 1/2+1/4+1/8+...+1/2'+...— 1.0
= Shorthand notation for all 1 bits to the right of binary point: 1.0 — ¢

Fractional Values

University of Washington

Representable Values

m Limitations of fractional binary numbers:
= Can only exactly represent numbers that can be written as x * 2V
= QOther rational numbers have repeating bit representations

m Value Representation
= 1/3 0.0101010101[01]..,
= 1/5 0.001100110011[0011]..,

= 1/10 0.0001100110011[0011]..,

Fractional Values

University of Washington

Fixed Point Representation

m We might try representing fractional binary numbers by
picking a fixed place for an implied binary point

= “fixed point binary numbers”

m Let's do that, using 8-bit fixed point numbers as an example
= #1:the binary point is between bits 2 and 3
b, bbb, by [.] b, b, by
= #2:the binary point is between bits 4 and 5
b, be b [.] b, by b, b, b,
m The position of the binary point affects the range and
precision of the representation
= range: difference between largest and smallest numbers possible
= precision: smallest possible difference between any two numbers

Fractional Values

University of Washington

Fixed Point Pros and Cons

m Pros

= |t's simple. The same hardware that does integer arithmetic can do
fixed point arithmetic

= |n fact, the programmer can use ints with an implicit fixed point
= ints are just fixed point numbers with the binary point
to the right of b,
m Cons
= There is no good way to pick where the fixed point should be

= Sometimes you need range, sometimes you need precision — the
more you have of one, the less of the other.

Fractional Values

University of Washington

Integer & Floating Point Numbers

Representation of integers: unsigned and signed
Unsigned and signed integers in C

Arithmetic and shifting

Sign extension

Background: fractional binary numbers
IEEE floating-point standard

Floating-point operations and rounding

Floating-point in C

IEEE Floating Point Standard

University of Washington

IEEE Floating Point

m Analogous to scientific notation
= Not 12000000 but 1.2 x 107; not 0.0000012 but 1.2 x 10®
= (writein Ccode as: 1.2e7; 1.2e-6)

m |EEE Standard 754

= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs today

m Driven by numerical concerns
= Standards for handling rounding, overflow, underflow
" Hard to make fast in hardware but numerically well-behaved

m 1989 Turing Award to William Kahan (UC Berkeley)

IEEE Floating Point Standard

University of Washington

Floating Point Representation

m Numerical form:

Vo= (-1)° * M * 2F

= Sign bit s determines whether number is negative or positive
= Significand (mantissa) M normally a fractional value in range [1.0,2.0)
= Exponent E weights value by a (possibly negative) power of two

m Representation in memory:
= MSB s is sign bit s
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

s | exp frac

IEEE Floating Point Standard

University of Washington

Precisions

m Single precision: 32 bits

s | exp frac
k=8 n=23

m Double precision: 64 bits

s | exp frac
1 k=11 n=>52

IEEE Floating Point Standard

University of Washington

Normalization and Special Values

S E
V=(-1) *M*2 s | exp frac

k n
m “Normalized” means the mantissa M has the form 1.xxxxx

= 0.011 x 2° and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

= Since we know the mantissa starts with a 1, we don't bother to store it!

m How do we represent 0.0? Or special / undefined values like
1.0/0.0?

IEEE Floating Point Standard

University of Washington

Normalization and Special Values

S E
V=(-1) *M*2 s | exp frac

k n
m “Normalized” means the mantissa M has the form 1.xxxxx

= 0.011 x 2° and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

= Since we know the mantissa starts with a 1, we don't bother to store it

m Special values:
" The bit pattern 00...0 represents zero

" |fexp==11...1and £frac ==00...0, it represents ®©
= e.g.1.0/0.0=-1.0/-0.0 =+%°, 1.0/-0.0=-1.0/0.0=-©
" |[fexp==11...1and frac |=00...0, it represents NaN: “Not a Number”

= Results from operations with undefined result,
e.g. sqrt(—1), oo — oo, 0o * ()

IEEE Floating Point Standard

University of Washington

Normalized Values

S E
V=(-1) *M*2 s | exp frac

k n
m Condition: exp = 000...0 and exp=111...1
m Exponent coded as biased value: E = exp - Bias
= exp is an unsigned value ranging from 1 to 2K.2 (k == # bits in exp)
= Bigs = 21 -1
= Single precision: 127 (soexp: 1..254, E:-126...127)
= Double precision: 1023 (so exp: 1...2046, E: -1022...1023)
" These enable negative values for E, for representing very small values

m Significand coded with implied leading 1: M = 1.xxx...x,
= xxx..X:the n bits of £frac
= Minimum when 000...0 (M =1.0)
= Maximum when 111..1 (M =2.0-¢)
= Get extra leading bit for “free”

IEEE Floating Point Standard

University of Washington

Normalized Encoding Example

S E
V=(-1) *M*2 s | exp frac

k n

m Value: float £ = 12345.0;
= 12345, = 11000000111001,
=1.1000000111001, x 213 (normalized form)

m Significand:

M = 1.1000000111001,

frac= 10000001110010000000000,
m Exponent: E = exp - Bias, so exp = E + Bias

E = 13

Bias = 127

exp = 140 = 10001100,
m Result:

0{/10001100(({10000001110010000000000

S exp frac

IEEE Floating Point Standard

University of Washington

Integer & Floating Point Numbers

Representation of integers: unsigned and signed
Unsigned and signed integers in C

Arithmetic and shifting

Sign extension

Background: fractional binary numbers
IEEE floating-point standard
Floating-point operations and rounding

Floating-point in C

Floating Point Operations

University of Washington

How do we do operations?

m Unlike the representation for integers, the representation for
floating-point numbers is not exact

Floating Point Operations

University of Washington

Floating Point Operations: Basic Idea

S E
V=(-1) *M*2 s | exp frac

k n

B X +. y = Round(x + y)

B X *. y = Round(x * y)

m Basic idea for floating point operations:
" First, compute the exact result
" Then, round the result to make it fit into desired precision:
= Possibly overflow if exponent too large

= Possibly drop least-significant bits of significand to fit into £rac

Floating Point Operations

Rounding modes

m Possible rounding modes (illustrated with dollar rounding):
$1.40 $1.60 $1.50 $2.50 -5$1.50

" Round-toward-zero S1 S1 S1 S2 -S1
" Round-down (-o0) S1 S1 S1 S2 -S2
= Round-up (+x) S2 S2 S2 S3 -S1
= Round-to-nearest S1 S2 ?? ?? ??
= Round-to-even S1 S2 S2 S2 -S2

m What could happen if we’re repeatedly rounding the results of
our operations?

= |f we always round in the same direction, we could introduce a statistical
bias into our set of values!

m Round-to-even avoids this bias by rounding up about half the
time, and rounding down about half the time
= Default rounding mode for IEEE floating-point

Floating Point Operations

University of Washington

Mathematical Properties of FP Operations

m If overflow of the exponent occurs, result will be o or -00
m Floats with value «, -0, and NaN can be used in operations

= Resultis usually still o0, -0, or NaN; sometimes intuitive, sometimes not

m Floating point operations are not always associative or
distributive, due to rounding!

"= (3.14+1e10)-1e10 !'= 3.14 +(1e10- 1e10)
= 1e20 * (1e20- 1e20) != (1e20 * 1e20) - (1e20 * 1e20)

Floating Point Operations

University of Washington

Integer & Floating Point Numbers

Representation of integers: unsigned and signed
Unsigned and signed integers in C

Arithmetic and shifting

Sign extension

Background: fractional binary numbers
IEEE floating-point standard
Floating-point operations and rounding

Floating-point in C

Floating Point in C

University of Washington

Floating Point in C

m C offers two levels of precision
float single precision (32-bit)
double double precision (64-bit)
m Default rounding mode is round-to-even
m #include <math.h>toget INFINITY and NAN constants

m Equality (==) comparisons between floating point numbers are
tricky, and often return unexpected results
= Just avoid them!
= Substitute things like: (abs(x-y) / max(abs(x),abs(y))) < epsilon
= Not guaranteed — depends on what you’re doing, the data, etc.

= When in doubt, find a trained Numerical Analyst or use a carefully-
written library

Floating Point in C

University of Washington

Floating Point in C

m Conversions between data types:

® Casting between int, £float, and double changes the bit
representation!!

" int - float
= May be rounded; overflow not possible
" int - double or float - double

= Exact conversion, as long as int has < 53-bit word size
" double or float - int

= Truncates fractional part (rounded toward zero)
= Not defined when out of range or NaN: generally sets to Tmin

Floating Point in C

University of Washington

Summary

m Zero
0({]100000000{|0000000000000000000000
m Normalized values

s|| 1to2%-2 significand = 1.M

m Infinity
s({(11111111{10000000000000000000000
m NaN

s(({11111111 non-zero
m Denormalized values
s{|00000000 significand = 0.M

S exp frac

University of Washington

Summary (cont’d)

m As with integers, floats suffer from the fixed number of bits
available to represent them
= Can get overflow/underflow, just like ints
= Some “simple fractions” have no exact representation (e.g., 0.2)
® Can also lose precision, unlike ints
= “Every operation gets a slightly wrong result”

m Mathematically equivalent ways of writing an expression may
compute different results
= Violates associativity/distributivity

m Never test floating point values for equality!

Floating Point in C

