Computer Systems

CSE 410 Autumn 2013 4 – Floating Point

Integer & Floating Point Numbers

- Representation of integers: unsigned and signed
- Unsigned and signed integers in C
- Arithmetic and shifting
- Sign extension
- Background: fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C
- Reading: Bryant/O'Hallaron sec. 2.4

Fractional Binary Numbers

- What is 1011.101₂?
- How do we interpret fractional *decimal* numbers?
 - e.g. 107.95₁₀
 - Can we interpret fractional binary numbers in an analogous way?

Fractional Binary Numbers

Representation

Bits to right of "binary point" represent fractional powers of 2

Represents rational number:
$$\sum_{k=-i}^{i} b_k \cdot 2$$

Fractional Binary Numbers: Examples

Value

Representation

- 5 and 3/4 101.11₂
- 2 and 7/8
- **63/64**

- 10.111₂
 - 0.111111₂

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of the form **0.111111**..., are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Shorthand notation for all 1 bits to the right of binary point: 1.0ε

Representable Values

- Limitations of fractional binary numbers:
 - Can only exactly represent numbers that can be written as x * 2^y
 - Other rational numbers have repeating bit representations

Value Representation

- **1/3** 0.01010101[01]...₂
- **1/5** 0.00110011[0011]...₂
- **1/10** 0.0001100110011[0011]...₂

Fixed Point Representation

- We might try representing fractional binary numbers by picking a fixed place for an implied binary point
 - "fixed point binary numbers"
- Let's do that, using 8-bit fixed point numbers as an example
 - #1: the binary point is between bits 2 and 3 b₇ b₆ b₅ b₄ b₃ [.] b₂ b₁ b₀
 - #2: the binary point is between bits 4 and 5
 b₇ b₆ b₅ [.] b₄ b₃ b₂ b₁ b₀
- The position of the binary point affects the range and precision of the representation
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers

Fixed Point Pros and Cons

Pros

- It's simple. The same hardware that does integer arithmetic can do fixed point arithmetic
 - In fact, the programmer can use ints with an implicit fixed point
 - ints are just fixed point numbers with the binary point to the right of b₀

Cons

- There is no good way to pick where the fixed point should be
 - Sometimes you need range, sometimes you need precision the more you have of one, the less of the other.

Integer & Floating Point Numbers

- Representation of integers: unsigned and signed
- Unsigned and signed integers in C
- Arithmetic and shifting
- Sign extension
- Background: fractional binary numbers
- **■** IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

IEEE Floating Point

Analogous to scientific notation

- Not 12000000 but 1.2 x 10⁷; not 0.0000012 but 1.2 x 10⁻⁶
 - (write in C code as: 1.2e7; 1.2e-6)

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs today

Driven by numerical concerns

- Standards for handling rounding, overflow, underflow
- Hard to make fast in hardware but numerically well-behaved
- 1989 Turing Award to William Kahan (UC Berkeley)

Floating Point Representation

Numerical form:

$$V_{10} = (-1)^{5} * M * 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0)
- Exponent E weights value by a (possibly negative) power of two

Representation in memory:

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

S	exp	frac
	-	

Precisions

■ Single precision: 32 bits

■ Double precision: 64 bits

Normalization and Special Values

$$V = (-1)^{S} * M * 2^{E}$$

- "Normalized" means the mantissa M has the form 1.xxxxx
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it!
- How do we represent 0.0? Or special / undefined values like 1.0/0.0?

Normalization and Special Values

$$V = (-1)^{S} * M * 2^{E}$$

"Normalized" means the mantissa M has the form 1.xxxxx

- 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
- Since we know the mantissa starts with a 1, we don't bother to store it

Special values:

- The bit pattern 00...0 represents zero
- If exp == 11...1 and frac == 00...0, it represents ∞

• e.g.
$$1.0/0.0 = -1.0/-0.0 = +\infty$$
, $1.0/-0.0 = -1.0/0.0 = -\infty$

- If exp == 11...1 and frac != 00...0, it represents NaN: "Not a Number"
 - Results from operations with undefined result, e.g. sqrt(-1), $\infty \infty$, $\infty * 0$

Normalized Values

$$V = (-1)^{S} * M * 2^{E}$$

- Condition: $exp \neq 000...0$ and $exp \neq 111...1$
- Exponent coded as biased value: E = exp Bias
 - **exp** is an *unsigned* value ranging from 1 to 2^k-2 (k == # bits in **exp**)
 - $Bias = 2^{k-1} 1$
 - Single precision: 127 (so *exp*: 1...254, *E*: -126...127)
 - Double precision: 1023 (so *exp*: 1...2046, *E*: -1022...1023)
 - These enable negative values for E, for representing very small values
- Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: the n bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when **111...1** ($M = 2.0 \varepsilon$)
 - Get extra leading bit for "free"

Normalized Encoding Example

$$V = (-1)^{S} * M * 2^{E}$$

■ Value: float f = 12345.0;

■
$$12345_{10} = 11000000111001_2$$

= $1.1000000111001_2 \times 2^{13}$ (normalized form)

■ Significand:

$$M = 1.100000111001_2$$

frac= 100000111001000000000_2

■ Exponent: E = exp - Bias, so exp = E + Bias

$$E = 13$$
 $Bias = 127$
 $exp = 140 = 10001100_{2}$

Result:

Integer & Floating Point Numbers

- Representation of integers: unsigned and signed
- Unsigned and signed integers in C
- Arithmetic and shifting
- Sign extension
- Background: fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

How do we do operations?

 Unlike the representation for integers, the representation for floating-point numbers is not exact

Floating Point Operations: Basic Idea

$$V = (-1)^{S} * M * 2^{E}$$

- $\mathbf{x} +_{\mathbf{f}} \mathbf{y} = Round(\mathbf{x} + \mathbf{y})$
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = Round(\mathbf{x} \times \mathbf{y})$
- Basic idea for floating point operations:
 - First, compute the exact result
 - Then, round the result to make it fit into desired precision:
 - Possibly overflow if exponent too large
 - Possibly drop least-significant bits of significand to fit into frac

Rounding modes

Possible rounding modes (illustrated with dollar rounding):

	\$1.40	\$1.60	\$1.50	\$2.50	- \$1.50
Round-toward-zero	\$1	\$1	\$1	\$2	- \$1
Round-down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round-up (+∞)	\$2	\$2	\$2	\$3	- \$1
Round-to-nearest	\$1	\$2	??	??	??
Round-to-even	\$1	\$2	\$2	\$2	- \$2

- What could happen if we're repeatedly rounding the results of our operations?
 - If we always round in the same direction, we could introduce a statistical bias into our set of values!
- Round-to-even avoids this bias by rounding up about half the time, and rounding down about half the time
 - Default rounding mode for IEEE floating-point

Mathematical Properties of FP Operations

- If overflow of the exponent occurs, result will be ∞ or $-\infty$
- Floats with value ∞ , $-\infty$, and NaN can be used in operations
 - Result is usually still ∞ , $-\infty$, or NaN; sometimes intuitive, sometimes not
- Floating point operations are not always associative or distributive, due to rounding!
 - **(**3.14 + 1e10) 1e10 != 3.14 + (1e10 1e10)
 - 1e20 * (1e20 1e20) != (1e20 * 1e20) (1e20 * 1e20)

Integer & Floating Point Numbers

- Representation of integers: unsigned and signed
- Unsigned and signed integers in C
- Arithmetic and shifting
- Sign extension
- Background: fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

Floating Point in C

C offers two levels of precision

```
float single precision (32-bit)
double double precision (64-bit)
```

- Default rounding mode is round-to-even
- #include <math.h> to get INFINITY and NAN constants
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results
 - Just avoid them!
 - Substitute things like: (abs(x-y) / max(abs(x),abs(y))) < epsilon</p>
 - Not guaranteed depends on what you're doing, the data, etc.
 - When in doubt, find a trained Numerical Analyst or use a carefullywritten library

Floating Point in C

Conversions between data types:

- Casting between int, float, and double changes the bit representation!!
- lacktriangle int igtarrow float
 - May be rounded; overflow not possible
- int \rightarrow double or float \rightarrow double
 - Exact conversion, as long as int has \leq 53-bit word size
- double or float \rightarrow int
 - Truncates fractional part (rounded toward zero)
 - Not defined when out of range or NaN: generally sets to Tmin

Summary

- Zero
- Normalized values
 - s 1 to 2^k-2

significand = 1.M

Infinity

- NaN
 - s 11111111

non-zero

Denormalized values

s 00000000

significand = 0.M

S

exp

frac

Summary (cont'd)

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some "simple fractions" have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity
- Never test floating point values for equality!