University of Washington

Computer Systems

CSE 410 Autumn 2013
12 — Virtual Memory

16 May 2012 Virtual Memory 1

University of Washington

Memory & data

Roadmap Integers & floats

Machine code & C

C: Java:
x86 assembly

car *c = malloc(sizeof (car)); Car ¢ = new Car(); Procedures & stacks
c->miles = 100; c.setMiles (100) ; Arrays & structs
c->gals = 17; ¢.setGals(17); Memory & caches
float mpg = get mpg(c) ; float mpg = y
free(c) ; c.getMPG () ; Processes

Y — Virtual memory
Assembly get mpg: Memory allocation
language: AR e Javavs. C

movq %rsp, S%rbp
popq $rbp

ret
v

Machine 0111010000011000
de- 100011010000010000000010
coae. 1000100111000010
110000011111101000011111
Computer

system:

Virtual Memory Overview

Virtual Memory (VM)

Overview and motivation

Indirection

H

H

m VM as a tool for caching

m Memory management/protection and address translation
H

Virtual memory example

Virtual Memory Overview

University of Washington

Processes

m Definition: A process is an instance of a running program
"= One of the most important ideas in computer science
" Not the same as “program” or “processor”

m Process provides each program with two key abstractions:
= Logical control flow
= Each process seems to have exclusive use of the CPU
= Private virtual address space
= Each process seems to have exclusive use of main memory

m How are these illusions maintained?
" Process executions interleaved (multi-tasking) — last section
= Address spaces managed by virtual memory system — this section!

Virtual Memory Overview

University of Washington

Virtual Memory (Previous Lectures)

m Programs refer to virtual memory addresses
" movl (%ecx),%eax

= Conceptually memory is just a very large array of bytes
= Each byte has its own address

= System provides address space private to particular “process”

m Allocation: Compiler and run-time system

= Where different program objects should be stored
= All allocation within single virtual address space

m What problems does virtual memory solve?

Virtual Memory Overview

University of Washington

Problem 1: How Does Everything Fit?

64-bit addresses: Physical main memory:
16 Exabyte Few Gigabytes

And there are many processes

Virtual Memory Overview

University of Washington

Problem 2: Memory Management

Physical main memory

Process 1
stack
Process 2 heap What goes
Process 3 X .text where?
.data
Process n

Virtual Memory Overview

Problem 3: How To Protect

Physical main memory

o >

Process j

Problem 4: How To Share?

Physical main memory

Process i \
Process j /

Virtual Memory Overview

University of Washington

Virtual Memory (VM)

Overview and motivation
Indirection

H

H

m VM as a tool for caching

m Memory management/protection and address translation
H

Virtual memory example

University of Washington

How would you solve those problems?

m Fitting a huge memory into a tiny physical memory

m Managing the memory spaces of multiple processes

m Protecting processing from stepping on each other’s memory
m Allowing processes to share common parts of memory

University of Washington

Indirection

m “Any problem in computer science can be solved by
adding another level of indirection”

m Without Indirecton 'Name :[l Thing

m With Indirection Name _

\ 4
®
\ 4

Thing

Thing

Indirection

University of Washington

Indirection

m Indirection: the ability to reference something using a name, reference, or
container instead the value itself. A flexible mapping between a name and
a thing allows changing the thing without notifying holders of the name.

m Without Indirection Name :[l Thing
m With Indirection Name —

"~k » | Thing

TS Thing

m Examples:
Domain Name Service (DNS) name->IP address, phone system (e.g., cell
phone number portability), snail mail (e.g., mail forwarding), 911 (routed
to local office), DHCP, call centers that route calls to available operators,
etc.

Indirection

University of Washington

Solution: Level Of Indirection

Virtual memory

Process 1

Physical memory

mapping

Virtual memory

Process n

m Each process gets its own private virtual address space
m Solves the previous problems

Indirection

University of Washington

Address Spaces

m Virtual address space: Set of N = 2" virtual addresses
{0,1, 2,3, .., N-1}

m Physical address space: Set of M = 2™ physical addresses (n > m)
{0,1,2,3,.. M-1}

m Every byte in main memory:
one physical address; zero, one, or more virtual addresses

Mapping

Virtual Address

Physical
Memory

»
»

s

L1LIPIY

Dis

Indirection

University of Washington

A virtual address can be
mapped to either
physical memory or disk.

University of Washington

A System Using Physical Addressing

Main memory

0:
1:

Physical address

PA
CPU (PA >

>
N RWN

M-1:

Data word

m Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

Indirection

University of Washington

A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address :
(VA) (PA) '
CPU —> MMU > 4
_ 5:
6:
7:
8:
M-1
Data word

m Used in all modern desktops, laptops, servers
m One of the great ideas in computer science

Indirection

Virtual Memory (VM)

Overview and motivation
Indirection

H

H

m VM as a tool for caching

m Memory management/protection and address translation
H

Virtual memory example

Virtual Memory as Cache

University of Washington

VM and the Memory Hierarchy

m Think of virtual memory as an array of N = 2" contiguous
bytes stored on a disk

m Then physical main memory (DRAM) is used as a cache for
the virtual memory array
" The cache blocks are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0

VP 0 | Unallocated

VP 1 | Cached ° Empty PPO
Uncached \ PP 1

Unallocated Empty

Cached

Uncached >< Empty

Cached PP 2m-P-1

VP 2"p-1 | Uncached M1

N-1

Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM

Virtual Memory as Cache

University of Washington

Memory Hierarchy: Core 2 Duo Not drawn to scale

L1/L2 cache: 64 B blocks

~4 VIB ~4 GB ~500 GB
L1
I-cache
"ﬁz . Main
32 KB i Memor
cache Yy
CPU | Reg Ll
D-cache
Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles
Latency: 3 cycles 14 cycles 100 cycles millions D | s k

Miss penalty (latency): 33x

Miss penalty (latency): 10,000x

Virtual Memory as Cache

University of Washington

DRAM Cache Organization

m DRAM cache organization driven by the enormous miss
penalty
= DRAM is about 10x slower than SRAM
= Disk is about 10,000x slower than DRAM
= (for first byte; faster for next byte)

m Consequences?
= Block size?
= Associativity?
= Write-through or write-back?

Virtual Memory as Cache

University of Washington

DRAM Cache Organization

m DRAM cache organization driven by the enormous miss
penalty
= DRAM is about 10x slower than SRAM
= Disk is about 10,000x slower than DRAM
= (for first byte; faster for next byte)

m Consequences
= large page (block) size: typically 4-8 KB, sometimes 4 MB
= Fully associative
= Any VP can be placed in any PP
= Requires a “large” mapping function — different from CPU caches
" Highly sophisticated, expensive replacement algorithms
= Too complicated and open-ended to be implemented in hardware
" Write-back rather than write-through

Virtual Memory as Cache

University of Washington

Indexing into the “DRAM Cache”

Main memory

0:
CPU Chip 1:
Virtual address Physical address ;
(VA) (PA) '
CPU —> MMU > 4
_ 5:
6:
7:
8:
M-1
Data word

How do we perform the VA -> PA translation?

Virtual Memory as Cache

University of Washington

Address Translation: Page Tables

m A page table (PT) is an array of page table entries (PTEs) that
maps virtual pages to physical pages.
Physical memory

Physical page (DRAM)
number or
VP1 PPO

Valid disk address /
VP 2
PTEO| 0 null /

VP4 PP3

—— VP 7
o//

mlolo|lr|O|R |~

null > Virtual memory
o« ~ (disk)
PTE 7 o« "~ | —
Memory re;lident The N VP 2
page table N ~a
(DRAM) s VP3
NS VP 4

How many page tables are in the system?
One per process

VP 6
VP 7

Virtual Memory as Cache

Address Translation With a Page Table

Virtual address (VA)
Page table
base register Virtual page number (VPN) Virtual page offset (VPO)
(PTBR)
Page table address Page table
for process >Valid Physical page number (PPN)
—>

Valid bit = 0:
page not in memory €
(page fault)

In most cases, the hardware
. \ 4 \ 4
(the MMU) can perform this Physical page number (PPN) Physical page offset (PPO)

translation on its own, :
without software assistance Physical address (PA)

Virtual Memory as Cache

Page Hit

University of Washington

m Page hit: reference to VM byte that is in physical memory

Virtual address

Physical memory

Physical page (DRAM)
number or
Valid disk address / z: ; PPO
PTEO| 0 null /
. —— - VP 7
; — VP4 PP 3
> 1 —
0 Q
0 null Y ¢ Virtual memory
0 o~ | < (disk)
PTE7 1 o« ~. The VP 1
Memory resident ™~ . T VP2
page table S ~a
(DRAM) \\ VP 3
o VP 4
VP 6
VP 7

Virtual Memory as Cache

Page Fault

University of Washington

m Page fault: reference to VM byte that is NOT in physical

memory

Physical page

Virtual address

number or

i\

mlolo|lr|O|r |~

Valid disk address /
VP 2
PTEO| 0 null /

Physical memory
(DRAM)

VP 1 PP O

VP 7
VP4 PP3

null > Virtual memory
Q\/ (diSk)
PTE 7 N VP 1
Memory re;lident \\ \\ VP 2
page table S~ o Sa
(DRAM) .. . VP 3
NS VP 4
What happens when a page >
VP 6

fault occurs?

Virtual Memory as Cache

VP 7

University of Washington

Fault Example: Page Fault

int a[1000];
m User writes to memory location ‘;‘ain ()
m That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User Process 0S

] exception: page fault

movl >
Create page and
returns load into memory

A 4

m Page handler must load page into physical memory
m Returns to faulting instruction: mov is executed again!
m Successful on second try

Virtual Memory as Cache

Handling Page Fault

m Page miss causes page fault (an exception)

Virtual address

University of Washington

Physical memory

Physical page (DRAM)
number or
Valid disk address / z: ; PPO
PTEO| 0 null /
— VP 7
L — VP 4 PP 3
1 —
0 Q
0 null Y ¢ Virtual memory
0 .~\/ \\\ (diSk)
PTE7 [1 o« -~ The VP 1
Memory resident ~~(Th el VP 2
page table NN Y a
(DRAM) so. VP3
\\\ VP4
VP 6
VP 7

Virtual Memory as Cache

Handling Page Fault

m Page miss causes page fault (an exception)

University of Washington

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or o1 op 0
id disk address
nu
VP 7
! — X PP 3
1 —
0 o
0 null Y ¢ Virtual memory
0 .~\/ \\\ (diSk)
g o« . - N VP 1
Memory resident ~~_ VP 2
page table ~a
(DRAM) VP3
. VP 4
VP 6

Virtual Memory as Cache

VP 7

Handling Page Fault

m Page miss causes page fault (an exception)

University of Washington

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

0

Physical page (DRAM)
number or
VP1 PPO
VP 2
VP 7
VP 3 PP3

Valid disk address /
null —1 /
—
—
— |
.

~lolo|lo|r |k |~

null S Virtual memory

..\/‘\ (dISk)
TN — VP 1
Memory resident ~~(\\\ VP 2

page table VN

(DRAM) Ssoo s VP3
\\\ VP4
VP 6
VP 7

Virtual Memory as Cache

Handling Page Fault

m Page miss causes page fault (an exception)

University of Washington

m Page fault handler selects a victim to be evicted (here VP 4)

m Offending instruction is restarted: page hit!

Virtual address

Physical memory

Physical page (DRAM)
number or
Valid disk address / z: ; PPO
PTEO| 0 null /
—— VP 7
1 — VP 3 PP 3
1 —
0 e
0 null S Virtual memory
0 o\/‘\\\ (disk)
PTE7 |1 o~ | >~ 1
Memory resident ~~(\\\ VP 2
page table VN
(DRAM) Ssoo s VP3
\\\ VP 4
VP 6
VP 7

Virtual Memory as Cache

University of Washington

Why does it work? Locality

m Virtual memory works well because of locality
= Same reason that L1 /L2 / L3 caches work

m The set of virtual pages that a program is “actively” accessing
at any point in time is called its working set

= Programs with better temporal locality will have smaller working sets

m If (working set size < main memory size):
® Good performance for one process after compulsory misses

m If (SUM(working set sizes) > main memory size):

® Thrashing: Performance meltdown where pages are swapped (copied)
in and out continuously

Virtual Memory as Cache

Virtual Memory (VM)

Overview and motivation
Indirection

Memory management/protection and address translation

|
|
m VM as a tool for caching
|
|

Virtual memory example

Address Translation

VM for Managing Multiple Processes

m Key abstraction: each process has its own virtual address space
" |t can view memory as a simple linear array
m With virtual memory, this simple linear virtual address space

need not be contiguous in physical memory
" Process needs to store data in another VP? Just map it to any PP!

0 Address 0

Virtual lati Physical
Address VP 1 transiation Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP 6 library code)
. 0
Virtual _ > PP8
Address VP 1
Space for VP 2
Process 2: oee

N-1 Address Translation M-1

VM for Protection and Sharing

m The mapping of VPs to PPs provides a simple mechanism for
protecting memory and for sharing memory btw. processes
= Sharing: just map virtual pages in separate address spaces to the same
physical page (here: PP 6)
" Protection: process simply can’t access physical pages it doesn’t have a
mapping for (here: Process 2 can’t access PP 2)

0 Address 0

Virtual lati Physical
Address VP 1 transiation Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP 6 library code)
. 0
Virtual _ > PP8
Address VP 1
Space for VP 2
Process 2: oee

N-1 Address Translation M-1

University of Washington

Memory Protection Within a Single Process

m Extend PTEs with permission bits

m MMU checks these permission bits on every memory access

= |f violated, raises exception and OS sends SIGSEGV signal to process

Process i:

VP 0O:
VP 1:
VP 2:

Process j:
VP 0:
VP 1:
VP 2:

Physical
Valid SUP WRITE EXEC Address Address Space
Yes Yes No No PP 6
Yes No No Yes PP4
—>
Yes Yes Yes No PP 2 A2
[J
PP4
[J
[}
PP 6
Valid SUP WRITE EXEC Address PP8
Yes No Yes No PP9 —> ppg
Yes Yes No No PP 6
Yes No Yes No PP 11 —> PP 11

Address Translation

University of Washington

Address Translation: Page Hit
2

CPU Chip PTEA .
2 A PTE
>
CPU MMU © Cache/
PA 5| Memory

Data

1) Processor sends virtual address to MMU (memory management unit)

2-3) MMU fetches PTE from page table in cache/memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

Address Translation

University of Washington

Address Translation: Page Fault

Exception
|m— === === > Page fault handler
| 4
I
I
! @ U
CPU Chip o ! PTEA S Victigagb
CPU YA > mmu [e—EE Cache/ Disk
o e Memory
< New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in cache/memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

Address Translation

University of Washington

Hmm... Translation Sounds Slow!

m The MMU accesses memory twice: once to first get the PTE
for translation, and then again for the actual memory request
from the CPU

" The PTEs may be cached in L1 like any other memory word

= But they may be evicted by other data references

= And a hitin the L1 cache still requires 1-3 cycles

m What can we do to make this faster?

Address Translation

University of Washington

Speeding up Translation with a TLB

m Solution: add another cache!

m Translation Lookaside Buffer (TLB):
= Small hardware cache in MMU
= Maps virtual page numbers to physical page numbers
= Contains complete page table entries for small number of pages
= Modern Intel processors: 128 or 256 entries in TLB

Address Translation

University of Washington

TLB Hit

CPU Chip
TLB
Q T PTE
VPN v e
VA PA
> >
CPU MMU 0 Cache/
] Memory
Data

A TLB hit eliminates a memory access

Address Translation

University of Washington

TLB Miss

CPU Chip

TLB G

6 PTE
VPN

VA PTEA
> >
CPU MMU Cache/
3 s| Memory

Data

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare

Address Translation

Virtual Memory (VM)

Overview and motivation
Indirection

H

H

m VM as a tool for caching

m Memory management/protection and address translation
H

Virtual memory example

Virtual Memory Example

University of Washington

Simple Memory System Example

m Addressing
= 14-bit virtual addresses
= 12-bit physical address
= Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

\ 4
A

VPN

v

VPO
Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

A

)4

v

PPN PPO
Physical Page Number Physical Page Offset

Virtual Memory Example

University of Washington

Simple Memory System Page Table

m Only showing first 16 entries (out of 256)

VPN | PPN | Valid VPN | PPN | Valid
00 28 1 08 13 1
01 - 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B - 0
04 - 0 0C - 0
05 16 1 oD 2D 1
06 - 0 OE 11 1
07 - 0 OF oD 1

Virtual Memory Example

University of Washington

Simple Memory System TLB

m 16 entries
m 4-way associative

< TLBT ><— TLBI —*
13 12 11 10 9 8 7 6 5 4 1 0
« VPN > VPO >
Set Tag PPN | Valid Tag PPN | Valid Tag PPN | Valid Tag PPN | Valid

0 03 - 0 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0

Virtual Memory Example

University of Washington

Simple Memory System Cache

m 16 lines, 4-byte block size
m Physically addressed

m Direct mapped
< cT > Cl ><— CcO —
11 10 9 8 7 6 5 4 3 2 1 0

< PPN > PPO >

ldx Tag Valid BO B1 B2 B3 ldx Tag Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 oD 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 - - - -

Virtual Memory Example

University of Washington

Current state of caches/tables

page size = 64 bytes

VPN | PPN | valid VPN | PPN | valid
TLB 00 28 1 08 13 1
Set Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | valid | Tag | PPN | Valid o1 - 0 09 17 1
0 03 - 0 09 oD 1 00 - 0 07 02 1 02 33 1 0A 09 1
1 03 2D 1 02 - 0 04 - 0 0A - 0 03 02 1 0B - 0
2 02 - 0 08 - 0 06 - 0 03 - 0 04 - 0 oc - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0 05 16 1 oD 2D 1
06 - 0 OE 11 1
07 - 0 OF oD 1
Page table
Cache

ldx Tag Valid BO B1 B2 B3 ldx Tag Valid BO B1 B2 B3

0 19 1 99 11 23 11 8 24 1 3A 00 51 89

1 15 0 - - - - 9 2D 0 - - - -

2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B

3 36 0 - - - - B 0B 0 - - - -

4 32 1 43 6D 8F 09 C 12 0 - - - -

5 oD 1 36 72 FO 1D D 16 1 04 96 34 15

6 31 0 - - - - E 13 1 83 77 1B D3

7 16 1 11 C2 DF 03 F 14 0 - - - -

Virtual Memory Example

University of Washington

Address Translation Example #1

Virtual Address: 0x03D4

« TLBT ><— TLBI —
13 12 11 10 9 8 7 6 5 4 3 2 1 0

o,0,0;0|1;11;1,01 01 0|0

A

v

VPN > VPO

VPN OxOF TLBI 3 TLBT 0x03 TLB Hit? Y_ Page Fault? N PPN:0x0D

Physical Address

< cT > cl ><— COo —

11 10 9 8 7 6 5 4 3 2 1 0

A

v

PPN PPO

co 0 CIOX5 CTOxOD Hit? Y Byte: 0x36

Virtual Memory Example

University of Washington

Address Translation Example #2

Virtual Address: 0x0B8F

< TLBT >~ TLBI —
13 12 11 10 9 8 7 6 5 4

O 0 |1, 0|1 1|10 0)]0 1 1 |1 1

A

\ 4

VPN > VPO

VPN Ox2E TLBI 2 TLBT OxOB TLBHit? N PageFault? 2. PPN: TBD

Physical Address

< CT > ¢ CI ><+— CO —>

11 10 9 8 7 6 5 4 3 2 1 0

A

v

PPN PPO

co cl cT Hit? Byte:

Virtual Memory Example

University of Washington

Address Translation Example #3

Virtual Address: 0x0020

« TLBT ><— TLBI —
13 12 11 10 9 8 7 6 5 4 3 2 1 0

o,o0;,0|0}0O0, 0]O0|(O0O|1 O|0 0|0 O

A

v

VPN > VPO

VPN 0x00 TLBI O TLBT 0x00 TLB Hit? N Page Fault? N PPN:0x28

Physical Address

< cT > cl ><— COo —

11 10 9 8 7 6 5 4 3 2 1 0

A

v

PPN PPO

CO 0 Cl0x8 CT 0x28 Hit? N Byte: Mem

Virtual Memory Example

University of Washington

Summary

m Programmer’s view of virtual memory
= Each process has its own private linear address space
= Cannot be corrupted by other processes

m System view of virtual memory
= Uses memory efficiently by caching virtual memory pages
= Efficient only because of locality
= Simplifies memory management and sharing

= Simplifies protection by providing a convenient interpositioning point to
check permissions

Virtual Memory Example

University of Washington

Memory System Summary

m L1/L2 Memory Cache
= Purely a speed-up technique
= Behavior invisible to application programmer and (mostly) OS
" |mplemented totally in hardware

m Virtual Memory

= Supports many OS-related functions
= Process creation, task switching, protection

= Software
= Allocates/shares physical memory among processes
= Maintains high-level tables tracking memory type, source, sharing
= Handles exceptions, fills in hardware-defined mapping tables

= Hardware
= Translates virtual addresses via mapping tables, enforcing permissions
= Accelerates mapping via translation cache (TLB)

Virtual Memory Example

