
9/26/2007 CSE 413 Au 07 - Introduction 1

CSE 413: Programming Languages
and their Implementation

Ruth Anderson

Autumn 2007

9/26/2007 CSE 413 Au 07 - Introduction 2

Today’s Outline

• Administrative Info

• Overview of the Course

• Introduction to Scheme

9/26/2007 CSE 413 Au 07 - Introduction 3

Staff

• Instructor
» Ruth Anderson (rea@cs.washington.edu)

• Teaching Assistants
» Jeremy Brudvik

(jtbrudvi@cs.washington.edu)
» Paramjit Sandhu

(paramsan@cs.washington.edu)

9/26/2007 CSE 413 Au 07 - Introduction 4

Me (Ruth Anderson)

• Grad Student at UW(Programming Languages,
Compilers, Parallel Computing)

• Taught Computer Scienceat the University of
Virginia for 5 years

• Grad Student at UW(Educational Technology, Pen
Computing)

• Just defended my PhD last fall!!

9/26/2007 CSE 413 Au 07 - Introduction 5

Web Page

• All info is on the web page for CSE 413
(or at least will be once things are a bit further along…)

» http://www.cs.washington.edu/413
» also known as

http://www.cs.washington.edu/education/courses/413/07au

• Look there for schedules, contact information,
assignments, links to discussion boards and mailing
lists, etc.

9/26/2007 CSE 413 Au 07 - Introduction 6

CSE 413 E-mail List

• If you are registered for the course you will be
automatically registered.

• E-mail list is used for posting important
announcements by instructor and TAs

• You are responsible for anything sent here

9/26/2007 CSE 413 Au 07 - Introduction 7

CSE 413 Discussion Board

• The course will have a Catalyst GoPost
message board

• Students and Instructors can post and reply to
posts. Please use this!

• Use:
» General discussion of class contents
» Hints and ideas about assignments (but not

detailed code or solutions)
» Other topics related to the course

9/26/2007 CSE 413 Au 07 - Introduction 8

Course Computing

• College of Arts & Sciences Instructional Computing Lab
(aka Math Science Computing Labs)

» Basement of Communications building: B-022/027

» http://depts.washington.edu/aslab

• Or work from home – all software available on
course web

9/26/2007 CSE 413 Au 07 - Introduction 9

Grading: Estimated Breakdown:

• Approximate Grading:
» Homework + Project: 55%
» Midterm: 15% (TBA, in class)
» Final: 25% (Tues December 11
» Participation 5% 2:30-4:20)

• Assignments:
» Weights may differ to account for relative difficulty of

assignments
» Assignments will be a mix of shorter written exercises

and longer programming projects

9/26/2007 CSE 413 Au 07 - Introduction 10

Deadlines & Late Policy

• Assignments generally due Thursday evenings
via the web
» Exact times and dates will be given for each

assignment

• Late policy: NONE
» As in, no late assignments accepted

(Talk to the instructor if something truly outside your
control causes problems here)

9/26/2007 CSE 413 Au 07 - Introduction 11

Academic (Mis-)Conduct

• You are expected to do your own work
» Exceptions (group work), if any, will be clearly announced

• Things that are academic mis-conduct:
» Sharing solutions, doing work for or accepting work from

others

» Searching for solutions on the web

» Consulting solutions to assignments or projects from
previous offerings of this course

• Integrity is a fundamental principle in the academic
world (and elsewhere) – we and your classmates trust
you; don’t abuse that trust

9/26/2007 CSE 413 Au 07 - Introduction 12

Policy on collaboration

• “Gilligan’s Island” rule:
» You may discuss problems with your classmates

to your heart's content.

» After you have solved a problem, discard all
written notesabout the solution.

» Go watch TV for a ½ hour (or more). Preferably
Gilligan's Island.

» Thenwrite your solution.

9/26/2007 CSE 413 Au 07 - Introduction 13

Homework for Today!!

1) Assignment #1: (posted in the next day or so)

2) Preliminary Survey: (On course web page)
Fill out by evening of Thursday Sept 27th

3) Information Sheet: Bring to lecture on Friday
Sept 28th

4) Download and Install Dr. Scheme
5) Reading: See “Scheme Resources” on Web page

9/26/2007 CSE 413 Au 07 - Introduction 14

Reading

• No required text, books on reserve

• Other references available from course web page

• Check “Functional Programming & Scheme” Link for:
» More notes on Scheme from previous course offerings

» Revised5 Report on the Algorithmic Language Scheme (R5RS)

• Section 2

» Link to Structure and Interpretation of Computer Programs (Abelson,
Sussman, & Sussman)
• Sections 1-1.1.5

9/26/2007 CSE 413 Au 07 - Introduction 15

Bring to Class on Friday:

• Name

• Email address

• Year (1,2,3,4)

• Major

• Hometown

• Interesting Fact or what
I did over
summer/break.

9/26/2007 CSE 413 Au 07 - Introduction 16

Handouts

• Slide handouts will be provided
» Also available on the web page

» Not…

• Homeworks not handed out, see the web page

9/26/2007 CSE 413 Au 07 - Introduction 17

Tentative Course Schedule

• Week 1: Scheme
• Week 2: Scheme
• Week 3: Scheme
• Week 4: Scheme wrapup/intro to C
• Week 5: Procedural programming issues, memory model,

pointers, tools
• Week 6: Interlude: formal languages and grammars; language

families, intro to compilers
• Week 7: compilers
• Week 8: Machine organization and runtime representation of

languages
• Week 9: compilers
• Week 10: garbage collection; special topics

9/26/2007 CSE 413 Au 07 - Introduction 18

What is this course about?

• Programming Languages

• Their Implementation

9/26/2007 CSE 413 Au 07 - Introduction 19

Why Study Programming Languages?

• Become Better Software Engineer
» Understand How To Use Language Features

» Appreciate Implementation Issues

• Better Background For Language Selection:

» Familiar With Range Of Languages

» Understand Issues/Advantages/Disadvantages

• Better Able To Learn Languages:

» You Might Need To Know A Lot

9/26/2007 CSE 413 Au 07 - Introduction 20

Why Study Compilers?

• Better Understanding Of Implementation
Issues in Programming Languages:

» How Is “This” Implemented?

» Why Does “This” Run So Slowly?

• Translation appears several places:

» Processing command line parameters

» Converting files/programs from one
language/format to another

9/26/2007 CSE 413 Au 07 - Introduction 21

Why are there so many (1,000s)
Programming Languages?

• Evolution: structured programming -> OO
programming

• Special Purposes: Lisp for symbols, Snobol
for strings, C for systems, Prolog for
relationships

• Personal Preference: Programmers have their
own personal tastes

9/26/2007 CSE 413 Au 07 - Introduction 22

What Makes a Programming Language
Successful?

• Expressive power (more suited to a particular
task)

• Easy to use (teaching/learning)

• Ease of implementation (easy to write a
compiler/interpreter for)

• Good compilers (Fortran)

• Economics, patronage (Cobol, Ada)

9/26/2007 CSE 413 Au 07 - Introduction 23

• Donald Knuth:

» Programming is the art of telling another
human being what one wants the computer to
do.

9/26/2007 CSE 413 Au 07 - Introduction 24

Programming Domains

• Scientific Applications:
» Using The Computer As A Large Calculator

» FORTRAN, Mathematica

• Business Applications:
» Data Processing And Business Procedures

» COBOL, Some PL/I, Spreadsheets

• Systems Programming:
» Building Operating Systems And Utilities

» C, C++

9/26/2007 CSE 413 Au 07 - Introduction 25

Programming Domains (2)

• Parallel Programming:
» Parallel And Distributed Systems

» Ada, CSP, Modula

• Artificial Intelligence:
» uses symbolic rather than numeric computations

» lists as main data structure, flexibility (code = data)

» Lisp 1959, Prolog 1970s

• Scripting Languages:

» A list of commands to be executed

» UNIX shell programming, awk, tcl, perl

9/26/2007 CSE 413 Au 07 - Introduction 26

Programming Domains (3)

• Education:
» Languages Designed Just To Facilitate Teaching

» Pascal, BASIC, Logo

• Special Purpose:
» Other Than The Above...

» Simulation

» Specialized Equipment Control

» String Processing

» Visual Languages

9/26/2007 CSE 413 Au 07 - Introduction 27

Why Scheme?

• The simplicity of the language lets us work on
problem solving, rather than just syntax issues

• Flexibility of the language lets us see that the
structure of C/Java/Basic is not the only way
to express problem solutions

• Variety is the spice of life
» study more than one language paradigm and study

the relationship between design paradigms
» professional programmers switch languages every

few years anyway, so start practicing now
9/26/2007 CSE 413 Au 07 - Introduction 28

Example DrScheme screen

Definitions window
enter programs here

Interactions window
enter expressions here

9/26/2007 CSE 413 Au 07 - Introduction 29

Definitions window

• Define programs in the Definitions window
» save the contents of the window to a file using

menu item File - Save Definitions As …

» load existing files with menu item File - Open

» execute the contents of the definitions window by
clicking on the “Run" button

» check and highlight syntax by clicking on the
"Check Syntax" button

» Re-indent all with control-i

9/26/2007 CSE 413 Au 07 - Introduction 30

Interactions Window

• Evaluate simple expressions directly in the
Interactions window

• Position the cursor after the ">", then type in
your expression
» DrScheme responds by evaluating the expression

and printing the result

» recall previous expression with escape-p

• Expressions can reference symbols defined
when you executed the Definitions window

9/26/2007 CSE 413 Au 07 - Introduction 31

Think functionally
• Programming that makes extensive use of

assignment is known as
» The order of assignments changes the operation of the

program because the state is changed by assignment

• Programming without the use of assignment
statements is known as
» In such a language, all procedures implement well-

defined mathematical functions of their arguments
whose behavior does not change

• Scheme is heavily oriented towards functional
style 9/26/2007 CSE 413 Au 07 - Introduction 32

Primitive Expressions

• constants
» integer :

» rational :

» real :

» boolean :

• variable names (symbols)
» Names can contain almost any character except

white space and parentheses

» Stick with simple names like value, x, iter, ...

9/26/2007 CSE 413 Au 07 - Introduction 33

Compound Expressions

• Either a combinationor a special form

1. Combination : (operator operand operand …)
» there are quite a few pre-defined operators

» We can define our own operators

2. Special form
» keywords in the language

» eg, define, if, cond

9/26/2007 CSE 413 Au 07 - Introduction 34

Combinations
• (operator operand operand …)

• this is prefix notation, the operator comes first

• a combination always denotes a procedure application

• the operator is a symbol or an expression, the applied
procedure is the associated value
» +, -, abs, my-function

» characters like * and + are not special; if they do not stand
alone then they are part of some name

9/26/2007 CSE 413 Au 07 - Introduction 35

Evaluating Combinations

• To evaluate a combination
» Evaluate the subexpressions of the combination

» Apply the procedure that is the value of the leftmost
subexpression (the operator) to the arguments that are
the values of the other subexpresions (the operands)

• For example

9/26/2007 CSE 413 Au 07 - Introduction 36

Percolate values up a tree
Evaluate
(* (+ 2 (* 4 6))

(+ 3 5 7))

9/26/2007 CSE 413 Au 07 - Introduction 37

Evaluating Special Forms

• Special forms have unique evaluation rules

• (define x 3) is an example of a special
form; it is not a combination
» the evaluation rule for a simple define is "associate

the given name with the given value"

• There are more special forms which we will
encounter, but there are surprisingly few of
them compared to other languages

9/26/2007 CSE 413 Au 07 - Introduction 38

Procedures

9/26/2007 CSE 413 Au 07 - Introduction 39

References

• Section 15.5,Concepts of Programming
Languages

• Section 4.1, Revised5 Report on the Algorithmic
Language Scheme (R5RS)

• For more help:
» Sections 1.1.6-1.1.8, Structure and Interpretation of

Computer Programs (Abelson, Sussman, &
Sussman)

9/26/2007 CSE 413 Au 07 - Introduction 40

Recall the definespecial form

• Special forms have unique evaluation rules

• (define x 3) is an example of a special
form; it is not a combination
» the evaluation rule for a simple define is "associate

the given name with the given value"

9/26/2007 CSE 413 Au 07 - Introduction 41

Define and name a variable

• (define 〈name〉 〈expr〉)

» define - special form

» name- name that the value of expr is bound to

» expr- expression that is evaluated to give the
value for name

• define is valid only at the top level of a
<program> and at the beginning of a <body>

9/26/2007 CSE 413 Au 07 - Introduction 42

Define and name a procedure

• (define (〈name〉 〈formal params〉) 〈body〉)

» define - special form

» name- the name that the procedure is bound to

» formal params- names used within the body of
procedure

» body- expression (or sequence of expressions)
that will be evaluated when the procedure is
called.

» The result of the last expression in the body will
be returned as the result of the procedure call

9/26/2007 CSE 413 Au 07 - Introduction 43

Example definitions

(define pi 3.1415926535)

(define (area-of-disk r)

(* pi (* r r)))

(define (area-of-ring outer inner)

(- (area-of-disk outer)

(area-of-disk inner)))

9/26/2007 CSE 413 Au 07 - Introduction 44

Defined procedures are "first class"

• Compound procedures that we define are used
exactly the same way the primitive procedures
provided in Scheme are used
» names of built-in procedures are not treated

specially; they are simply names that have been
pre-defined

» you can't tell whether a name stands for a
primitive (built-in) procedure or a compound
(defined) procedure by looking at the name or how
it is used

9/26/2007 CSE 413 Au 07 - Introduction 45

Evaluation example

• (area-of-ring 4 1)

9/26/2007 CSE 413 Au 07 - Introduction 46

Booleans

• Recall that one type of data object is boolean
» #t (true) or #f (false)

• We can use these explicitly or by calculating
them in expressions that yield boolean values

• An expression that yields a true or false value
is called a predicate
» #t =>

» (< 5 5) =>

» (> pi 0) =>

9/26/2007 CSE 413 Au 07 - Introduction 47

Conditional expressions

• As in all languages, we need to be able to
make decisions based on inputs and do
something depending on the result

Predicate Consequent

9/26/2007 CSE 413 Au 07 - Introduction 48

Special form: cond

• (cond 〈clause1〉 〈clause2〉 ... 〈clausen〉)

• each clause is of the form
» (〈predicate〉 〈expression〉)

• the last clause can be of the form
» (else 〈expression〉)

9/26/2007 CSE 413 Au 07 - Introduction 49

Example: sign.scm

; return the sign of x as -1, 0, or 1

(define (sign x)

(cond

((< x 0) -1)

((= x 0) 0)

((> x 0) +1)))

9/26/2007 CSE 413 Au 07 - Introduction 50

Special form: if

• (if 〈predicate〉 〈consequent〉 〈alternate〉)

• (if 〈predicate〉 〈consequent〉)

9/26/2007 CSE 413 Au 07 - Introduction 51

Examples : abs.scm

; absolute value function

(define (abs a)

9/26/2007 CSE 413 Au 07 - Introduction 52

Examples : true-false.scm

; return 1 if arg is true, 0 if arg is false

(define (true-false arg)

9/26/2007 CSE 413 Au 07 - Introduction 53

Logical composition

• (and 〈e1〉 〈e2〉... 〈en〉)

• (or 〈e1〉 〈e2〉... 〈en〉)

• (not 〈e〉)

• Scheme interprets the expressions ei one at a time in
left-to-right order until it can tell the correct answer

9/26/2007 CSE 413 Au 07 - Introduction 54

in-range.scm

; true if val is lo <= val <= hi

(define (in-range lo val hi)

(and (<= lo val)

(<= val hi)))

