
A-1

1

Topic #3:
Lambda

CSE 413, Autumn 2007

Programming Languages

2

Scheme procedures are "first class"

• Procedures can be manipulated like the other
data types in Scheme
» A variable can have a value that is a procedure

» A procedure value can be passed as an argument
to another procedure

» A procedure value can be returned as the result of
another procedure

» A procedure value can be included in a data
structure

3

define and name
(define (area-of-disk r)

(* pi (* r r)))

4

Special form: lambda
• (lambda (〈formals〉) 〈body〉)

• A lambda expression evaluates to a procedure
» it evaluates to a procedure that will later be

applied to some arguments producing a result

• 〈formals〉
» formal argument list that the procedure expects

• 〈body〉
» sequence of one or more expressions
» the value of the last expression is the value

returned when the procedure is actually called

5

"Define and name" with lambda

(define area-of-disk

(lambda (r)

(* pi (* r r))))

6

"Define and use" with lambda

• ((lambda (r) (* pi r r)) 1)

A-2

7

Separating procedures from names

• We can treat procedures as regular data items,
just like numbers
» and procedures are more powerful because they

express behavior, not just state

• We can write procedures that operate on other
procedures - applicative programming

8

define min-fx-gx

(define (min-fx-gx f g x)
(min (f x) (g x)))

9

apply min-fx-gx

(min-fx-gx square cube 2) ; (min 4 8) => 4

(min-fx-gx square cube -2) ; (min 4 -8) => -8

(min-fx-gx identity cube 2) ; (min 2 8) => 2

(min-fx-gx identity cube (/ 1 2)) ; (min 1/2 1/8) => 1/8

(define (identity x) x)

(define (square x)
(* x x))

(define (cube x)
(* x x x))

(define (min-fx-gx f g x)
(min (f x) (g x)))

10

apply s-fx-gx

(s-fx-gx min square cube 2) ; => (min 4 8) = 4

(s-fx-gx min square cube -2) ; => (min 4 -8) = -8

(s-fx-gx + square cube 2) ; => (+ 2 8) = 12

(s-fx-gx - cube square 3) ; => (- 27 9) = 18

; define a procedure ‘s-fx-gx’ that takes:
; s - a combining function that expects two numeric arguments
; and returns a single numeric value
; f, g - two functions that take a single numeric ar gument and
; return a single numeric value f(x) or g(x)
; x - the point at which to evaluate f(x) and g(x)
; s-fx-gx returns s(f(x),g(x))

11

Exercises
; 4. (CHALLENGE) Define a procedure ‘apply-n-times’ that takes:

; f - a function that take a single numeric argument and
; return a single numeric value f(x)
; n – the number of times to apply the function f
; ‘apply-n-times’ returns a function that accepts one numeric

; argument ‘x’ and the result of applying f() to ‘x’ , ‘n’
times

; Example: ((apply-n-times square 2) 3)
���� 81

