
A-1

1

Scheme: 
Closures

CSE 413, Autumn 2007

Programming Languages

2

Review: Higher Order Functions

• Take other functions as arguments (or)

• Return a function as a result

3

Review: map

• Example of a built in higher order function
• (map function alist)

» applies function to the elements of alist

(define (double-all m)
(map (lambda (x) (* 2 x)) m))

4

Can we implement cons/car/cdr?
• If we focus on the behaviors that are defined 

what do we actually need to do?
• (cons a b)

• (car something)

• (cdr something)

5

something

• We tend to think of the something returned by 
cons as a structured data variable of some sort

• However, the only actual requirement on 
something is that we can recover a and b from it 
using procedures named car and cdr

• How about we use a procedure definition for 
something ...

6

Procedural representation of pairs

(define (cons x y)

(lambda (m) (m x y)))

(define (car z)

(z (lambda (p q) p)))

(define (cdr z)

(z (lambda (p q) q)))

(define a (cons 1 2))
(car a)
(cdr a)

usage

definition



A-2

car
(define (car z)

(z (lambda (p q) p)))

(define (cons x y)

(lambda (m) (m x y)))

cons

Procedural cons and car

8

Lexical closure
• Take another look at the definition of cons

• Where did the values of x and y come from?

• Are they still around when we call car / cdr ?

(define (cons x y)

(lambda (m) (m x y)))

(define (car z)

(z (lambda (p q) p)))

9

current symbol definitions

• Lambda expressions evaluate to what is called 
a lexical closure
» a coupling of code and a lexical environment (a 

scope) 

» The lexical environment is necessary because the 
code needs a place to look up the definitions of 
symbols it references 

10

definition and execution

• x and y are referenced in the environment of 
the lambda expression's definition
» its lexical environment, which is in the definition 

of cons

• not the environment of its execution
» its dynamic environment, which is in car

(define (cons x y)

(lambda (m) (m x y)))

11

Variable number of arguments
• We can define a procedure that has zero or 

more required parameters, plus provision for a 
variable number of parameters to follow
» The required parameters are named in the define

statement as usual

» They are followed by a "." and a single parameter 
name

• At runtime, the single parameter name will be 
given a list of all the remaining actual 
parameter values

12

(same-parity x . y)

(define (same-parity x . y)
…

> (same-parity 1 2 3 4 5 6 7)
(1 3 5 7)
> (same-parity 2 3 4 5 6 7)
(2 4 6)
> 

The first argument value is assigned to x,
all the rest are assigned as a list to y


