Scheme:
Closures

CSE 413, Autumn 2007
Programming Languages

Review: Higher Order Functions

» Take other functions as arguments (or)
» Return a function as a result

Review map

» Example of a built in higher order function
» (map function alist)
» appliesfunction to the elements dlist

(define (double-all m)
(map (lambda (x) (* 2 x)) m))

Can we implement cons/car/cdr?

« If we focus on the behaviors that are defined
what do we actually need to do?
(cons ab)

e (car something)

e (cdr somet hing)

something

» We tend to think of theomething returned by
cons as a structured data variable of some sor

» However, the only actual requirement on
something is that we can recoverandb from it
using procedures namedr andcdr

» How about we use a procedure definition for
something ...

Procedural representation of pairs

definition

(define (cons x y)

(lambda (m) (m x y)))
usage

(define (car z) (define a (cons 1 2))

(z (lambda (p ) p))) gz: aei)

(define (cdr z)
(z (lambda (p q) @)))




Proceduratons andcar

cons

(define (cons x y)
(lambda (m) (m x y)))

car

(define (car z)
(z (lambda (p q) p)))

current symbol definitions

» Lambda expressions evaluate to what is callefl
a lexical closure
» a coupling of code and a lexical environment (a
scope)
» The lexical environment is necessary because the
code needs a place to look up the definitions of
symbols it references

Variable number of arguments

» We can define a procedure that has zero or
more required parameters, plus provision for a
variable number of parameters to follow

» The required parameters are named irdtfiee
statement as usual

» They are followed by a "." and a single parameter
name
» At runtime, the single parameter name will be
given a list of all the remaining actual
parameter values

Lexical closure

» Take another look at the definition of cons
(define (cons x y)
(lambda (m) (m x y)))
(define (car z)
(z (lambda (p q) p)))

» Where did the values of x and y come from?

* Are they still around when we calhr /cdr ?

definition and execution

(define (cons x y)
(lambda (m) (m x y)))

» x and y are referenced in the environment of
the lambda expression's definition

» its lexical environment, which is in the definitio
of cons

* not the environment of its execution
» its dynamic environment, which is dar

(same-parity X . y)

(define (same-parity X . y)

> (same-parity 123456 7)
(1357)

> (same-parity 23456 7)
(246)

>

The first argument value is assigned to X,
all the rest are assigned as a listto y




