
A-1

1

More C

CSE 413, Autumn 2007

(A few examples borrowed from cse303)

2

Topics

• Scope

• File layout

• Function declarations

• Parameter passing

• structs

3

Storage, lifetime, and scope

• Global variables allocated before main, deallocated after
main.
» Scope is entire program.
» Usually bad style, similar to public static Java fields.

• Static global variables like global variables but
» Scope is just that file, kind of like private static Java fields.
» Related: static functions cannot be called from other files.

• Static local variables like global variables (!) but
» Scope is just that function, rarely used.

• Local variables allocated “when reached”, deallocated “after
that block”
» Scope is that block.
» Like local variables in Java.

4

File Layout Style
// includes for functions, types defined elsewhere (just

prototypes)
#include <stdio.h>
#include ...

// global variables (usually avoid them)
int some_global;
// static variables (use only in this file)
static int this_file_arr[7] = { 0, 2, 4, 5, 9, -4, 6 };

// function prototypes for forward-references (to get around
// uses-follow-definition rule)
void some_later_fun(char, int); // argument names optional

// function definitions
void f() { ... }
void some_later_fun(char x, int y) {...}

int main(int argc, char**argv) {...}

5

Function Declarations

• A function must be defined or declared before
it is used.
» return type assumed int, ... complains when sees

actual definition if it has return type other than int

• Linker error if something is used but not
defined.

• Use -c to compile without linking (more later).
• To write mutually recursive functions, you just

need put a declaration before the definition.

6

C “Quirks”

• Declarations only at the beginning of a “block”
» e.g. the beginning of a function

» Just put in braces if needed to create a new block

• No built-in boolean type; use ints (or pointers)
» Anything but 0 (or NULL) is true.

» 0 and NULL are false.

A-2

7

Declaration Gotchas

• You can put multiple declarations on one line,
e.g.,

int x, y; or

int x=0, y; or

int x, y=0;

• But watch out....

int *x, y; means: int *x; int y;

(you usually are trying to say: int *x, *y;)

8

Function Arguments

• Storage and scope of arguments is like for
local variables.

• But initialized by the caller (“copying” the
value)

• So assigning to an argument has no affect on
the caller.

• But assigning to the space pointed-to by an
argument might.

• (see function call example)

9

What happens when we call h?

int* f(int x) {
int *p;
if(x) {

int y = 3;
p = &y;
}

y = 4;
*p = 7;
return p;

}
void g(int *p){

*p = 123;
}

void h() {
g(f(7));

} 10

Structs

• A struct is a record. (similar to a Java object
with no methods.)
» x.f is for field access.

» (*x).f in C is like x.f in Java.

» x->f is an abbreviation for (*x).f.

• There is a huge difference between passing a
struct and passing a pointer to a struct.

• (see struct example code)

