More C

CSE 413, Autumn 2007

(A few examples borrowed from cse303)

Topics

* Scope

* File layout

» Function declarations
« Parameter passing

* structs

Storage, lifetime, and scope

Global variables allocated before main, deallocated after
main.

» Scope is entire program.

» Usually bad style, similar to public static Jaiedds.

Static global variableslike global variables but

» Scope is just that file, kind of like private statava fields.

» Related: static functions cannot be called froheofiles.

Static local variableslike global variables () but

» Scope is just that function, rarely used.

Local variables allocated “when reached”, deallocated “after
that block”

» Scope is that block.

» Like local variables in Java.

File Layout Style

Il includes for functions, types defined el sewhere (just
pr ot ot ypes)

#incl ude <stdio. h>

#include ...

/1 global variables (usually avoid them

int sone_global;

/1 static variables (use only in this file)

static int this_file_arr[7] ={ 0, 2, 4, 5, 9, -4, 6 };

/1 function prototypes for forward-references (to get around
/1 uses-followdefinition rule)
voi d some_later_fun(char, int); // argument nanes optional

/1 function definitions
void f() { ... }
voi d some_later_fun(char x, int y) {...}

int main(int argc, char**argv) {...}

Function Declarations

A function must be defined or declared before
it is used.

» return type assumed int, ... complains when sees
actual definition if it has return type other thah

Linker error if something is used but not
defined.

Use -c to compile without linking (more later).

To write mutually recursive functions, you just
need put a declaration before the definition.

C “Quirks”

 Declarations only at the beginning of a “block’
» e.g. the beginning of a function
» Just put in braces if needed to create a new block
» No built-in boolean type; use ints (or pointers)
» Anything but O (or NULL) is true.
» 0 and NULL are false.

A-1

Declaration Gotchas

* You can put multiple declarations on one line,

e.g.,
int x, vy; or
int x=0, vy; or
int x, y=0;

» But watch out....
int *x, y; means:. int *x; int y;
(you usually are trying to say: int *x, *y;)

Function Arguments

Storage and scope of arguments is like for
local variables.

But initialized by the caller (“copying” the
value)

So assigning to an argument has no affect on
the caller.

But assigning to the space pointed-to by an
argument might.

(see function call example)

What happens when we call h?

int* f(int x) {
int *p;
if(x) {
int y=3;
p = &;
}
= 4;
=7;
turn p;

B T3

p
e
}

void g(int *p){

*p = 123;
}

void h() {
) g(f (7))

Structs

A struct is a record. (similar to a Java object
with no methods.)

» x.fis for field access.

» (*x).fin Cis like x.fin Java.

» x->f is an abbreviation for (*x).f.

There is a huge difference between passing &
struct and passing a pointer to a struct.

(see struct example code)

A-2

