
A-1

1

C: structs, malloc, free

CSE 413, Autumn 2007

10-24-2007

2

Topics

• structs

• malloc, free and the heap

3

Structs

• A struct is a record. (similar to a Java object
with no methods.)
» x.f is for field access.

» (*x).f in C is like x.f in Java.

» x->f is an abbreviation for (*x).f.

• There is a huge difference between passing a
struct and passing a pointer to a struct.

• (see struct example code)

4

Review: Passing Objects in Java

• Remember Java: objects are passed “by reference” (a copy of a reference to
the object is passed)

public static void java_example(Point arg1, Point arg2) {
// Modifies values referred to by arg1
arg1.x = 100;
arg1.y = 100;

// Modifies the arguments
// (which are copies - does nothing)
Point temp = arg1;
arg1 = arg2;
arg2 = temp;

}

Notes:
• This does not make copies of the Point objects themselves, just a copy of

the references (this is really like an address or pointer in C)

5

Passing structs in C

• In C there are two ways we could pass a struct:
» Pass the struct itself (this makes a copy of the struct - changes to fields

in the struct are not visible outside the function).
» Pass a pointer to the struct (this makes a copy of the pointer - changes

to fields in the struct are visible outside of the function)

// p is unchanged after this call

void wrong_update_x(struct Point p, int new_x) {
p.x = new_x;

}

// p is changed here

void update_x(struct Point * p, int new_x) {

p->x = new_x;

} 6

Returning structs in C

• In C there is another way we could change a struct
inside of a function even if we pass in the struct itself:

// Modifies its own copy of p1, but then
// returns that modified copy.
struct Point change_point(struct Point p1) {
p1.x = 15;
p1.y = 26;
return p1; // p1 is copied back

}

• This works, but copying entire structs can be less efficient than
copying a single pointer/address.

A-2

7

Java vs. C again
In Java:

Point arg1, Point arg2;
arg1 = new Point(0, 0);
arg2 = new Point(5, 6);

arg1 = arg2; // arg1 refers to the same object as arg2
arg2.x = 78; // arg1.x and arg2.x now both contain 78

In C:

struct Point arg1;
struct Point arg2;
initpoint(&arg1); // set x and y to zero
initpoint(&arg2); // set x and y to zero
modifypoint(&arg2, 5, 6); // set x=5 and y=6

arg1 = arg2; // the x and y fields from arg2 are
// copied into the x and y fields of arg1

arg2.x = 78; // arg2.x contains 78, arg1.x contains 5

8

Review: Creating objects in Java

arg2 = new Point(5, 6);

This does several different things:
• Allocate space for a Point
• Initialize the fields to null or 0
• Call the user-written constructor function
• Return a reference (pointer) to the new object

We can then pass this reference to and from functions
and the object lives “forever”.

9

Lifetimes in C

struct Point* bad_idea() {

struct Point ans;

ans.x = 0;

ans.y = 0;

return &ans;

}

What if we want:
• the efficiency of returning a pointer to a Point

• the Point to live beyond the lifetime of this function!

10

Malloc

void *malloc(size_t size);

• size_t is an unsigned long, indicates how many
bytes of memory are requested.

• Returns a pointer to the newly-allocated memory.

• Returns NULL on failure.

• Does not initialize the memory.

• You should cast the result to the pointer type you
want.

11

Malloc

Example:
char *char_array;
char_array =
(char*)malloc(MAX_SIZE*sizeof(char));

• Returns a pointer to a chunk of memory on the
heap

• Large enough to hold an array of length MAX_SIZE

with elements of type char.
• The memory is still not initialized!

12

Free

void *free(void* ptr);
• Returns the chunk of memory pointed to by ptr to the heap.

Example:

int *buffer1;
buffer1 = (int*) malloc(50*sizeof(int));
free(buffer1);

You should free what you malloc. Why?

Q: What is the value of buffer1 now?

