C: structs, malloc, free

CSE 413, Autumn 2007
10-24-2007

Topics

* structs
» malloc, free and the heap

Structs

» A structis a record. (similar to a Java object
with no methods.)
» x.fis for field access.
» (*x).fin Cis like x.fin Java.
» x->f is an abbreviation for (*x).f.

» There is a huge difference between passing &
struct and passing a pointer to a struct.

* (see struct example code)

Review: Passing Objects in Java

« Remember Java: objects are passed “by referena@pfaof areference to
the object is passed)

public static void java_exanpl e(Point argl, Point arg2) {
/1 Modifies values referred to by argl
argl.x = 100;
argl.y = 100;

/1 Modifies the argunents
Il (which are copies - does nothing)
Point tenp = argl;

argl = arg2;
arg2 = tenp;
}
Notes:

« This does not make copies of the Point objectitfedves, just a copy of
the references (this is really like an addressoamtpr in C) .

Passing structs in C

* In C there are two ways we could pass a struct:

» Pass the struct itself (this makes a copy of theest changes to fields
in the struct areot visible outside the function).

» Pass a pointer to the struct (this makes a coplyeopointer - changes
to fields in the struct aréisible outside of the function)

/1 p is unchanged after this call
voi d wrong_update_x(struct Point p, int new x) {
p. X = new_x;

}

/1 p is changed here
voi d update_x(struct Point * p, int new x) {
p->X = new_x;

} 5

Returning structs in C

¢ In C there is another way we could change a struct
inside of a function even if we pass in the strtsslf:

/1 Modifies its own copy of pl, but then
/1 returns that nodified copy.
struct Point change_point(struct Point pl) {

pl.x = 15;
pl.y = 26;
return pl; // pl is copied back

}

« This works, but copying entire structs can be &ffisient than
copying a single pointer/address.

6

A-1

Java vs. C again

InJava:

Point argl, Point arg2;

argl = new Point(0, 0);
arg2 = new Point(5, 6);
argl = arg2; // argl refers to the sane object as arg2

arg2.x = 78; // argl.x and arg2.x now both contain 78
InC:

struct Point argl;
struct Point arg2;
i ni tpoint(&rgl); I/ set x and y to zero
i ni t poi nt (&arg2); I/ set x and y to zero
nodi fypoint (&rg2, 5, 6); // set x=5 and y=6

argl = arg2; /1 the x and y fields fromarg2 are
/1 copied into the x and y fields of argl
arg2.x = 78; // arg2.x contains 78, argl.x contains 5

Review: Creating objects in Java

arg2 = new Point (5, 6);

This does several different things:

« Allocate space for a Point

« Initialize the fields to null or O

« Call the user-written constructor function

« Return a reference (pointer) to the new object

We can then pass this reference to and from fumgtio
and the object lives “forever”.

Lifetimes in C

struct Point* bad_idea() {
struct Point ans;
ans.x = 0;
ans.y = 0;
return &ans;

What if we want:
« the efficiency of returning a pointer tdPai nt
« thePoi nt to live beyond the lifetime of this function!

Malloc

void *mal | oc(size_t size);

¢ si ze_t is an unsigned long, indicates how many
bytes of memory are requested.

« Returns a pointer to the newly-allocated memory.
¢ Returns NULL on failure.
« Does not initialize the memory.

* You should cast the result to the pointer type you
want.

Malloc

Example:
char *char_array;

char_array =
(char*) mal | oc(MAX_SI ZE*si zeof (char));

* Returns a pointer to a chunk of memorythe
heap

« Large enough to hold an array of lengtix_si zE
with elements of typehar.

* The memory is still not initialized!

Free

void *free(void* ptr);
« Returns the chunk of memory pointed to by ptr @ fleap.

Example:

int *bufferi;
bufferl = (int*) malloc(50*sizeof(int));
free(bufferl);

You shouldfree what younai 1 oc. Why?

Q: What is the value of bufferl now?

A-2

