
1

1

Programming Languages
History

CSE 413, Autumn 2007

11-02-2007

2

Topics

• Big Picture

• Where Scheme, C, C++, Java fit in

• Fortran

• Algol 60

Donald Knuth:

» Programming is the art of telling another human
being what one wants the computer to do.

3

Programming Domains

• Scientific Applications:
» Using The Computer As A Large Calculator

» FORTRAN, Mathematica

• Business Applications:
» Data Processing And Business Procedures

» COBOL, Some PL/I, Spreadsheets

• Systems Programming:
» Building Operating Systems And Utilities

» C, C++

4

Programming Domains (2)

• Parallel Programming:
» Parallel And Distributed Systems
» Ada, CSP, Modula

• Artificial Intelligence:
» uses symbolic rather than numeric computations
» lists as main data structure, flexibility (code = data)
» Lisp 1959, Prolog 1970s

• Scripting Languages:

» A list of commands to be executed

» UNIX shell programming, awk, tcl, perl

5

Programming Domains (3)

• Education:
» Languages Designed Just To Facilitate Teaching

» Pascal, BASIC, Logo

6

C History

• Developed in early 1970s

• Purpose: implementing the Unix operating
system

• The C Programming Language, aka `K&R‘,
for its authors Brian Kernighan & Dennis
Ritchie, is canonical reference (1978)

• Evolution: ANSI, C99

2

7

Lisp & Scheme History

Lisp:
• McCarthy (1958/1960) for symbolic processing
• Based on Chruch’s Lambda Calculus
• 2 main Dialects: Scheme & Common Lisp
• Aside: Assembly language macros for the IBM 704 :

car (Contents of Address Register) and
cdr (Contents of Decrement Register)

Scheme:
• Developed by Guy Steele and Gerald Sussman in the 1970s
• Smaller & cleaner than Lisp
• Static scoping, tail recursion implemented efficiently

8

9

Fortran

10

Before High Level Languages

• Early computers (40’s) programmed directly
using numeric codes

• Then move to assembly language (requires an
assembler)

• Assembly language – slightly more friendly
version of machine code.

11

FORTRAN

• "Formula TRANslating system":
• original proposal in 1954, John Backus, IBM 704
• based on assembly language
• language design was secondary to task of writing a

compiler
• much skepticism about higher-level languages.

Fortran had to be efficient to be accepted.
• Fortran was enormously successful; still in

widespread use. (Fortran77, Fortran 90)

12

Quotes from John Backus:

“As far as we were aware, we simply made up
the language as we went along. We did not
regard language design as a difficult
problem, merely a simple prelude to the real
problem: designing a compiler which could
produce efficient programs." [hopl-1 1978]

3

13

The project was to design a language for the
IBM 704, NOT a general language:

"We certainly had no idea that languages
almost identical to the one we were working
on would be used for more than one IBM
computer, not to mention those of other
manufacturers."

14

"Unfortunately we were hopelessly optimistic
in 1954 about the problems of debugging
Fortran programs (thus we find on page 2
of the Report: "Since Fortran should
virtually eliminate coding and
debugging...") and hence syntactic error
checking facilities were
weak."

15

"In our naive unawareness of language design
problems of course we knew nothing of many
issues which were later thought to be important,
e.g. block structure, conditional expressions, type
declarations – it seemed to us that once one had
the notions of the assignment statement, the
subscripted variable, and the DO statement in
hand, then the remaining problems of language
design were trivial: either their solution was thrust
upon one by the need to provide some machine
facility such as reading input, or by some
programming task which could not be done with
existing structures."

16

FORTRAN “Features”

• 80 columns only
• Implicit variable declaration
• No reserved words
• Weak typing
• Lots of GOTOs
• Early: no recursion, subroutines came late.
• Independently compiled subroutines was a win.
• No records or heterogeneous data types.
• Common and equivalence for sharing data – not a

win.

17

Control Statements in Fortran

• Based on IBM 704 branch instructions
» If statements

» Go to statements

• IF Statement:

IF (expression) n1, n2, n3

18

Fortran GOTO Statement

Unconditional GOTO:
GOTO 31

Computed GOTO:
GOTO (30,31,32,33), I

Assigned GOTO:
ASSIGN 20 TO N
…
GOTO N, (20,30,40)these are just comments!

4

19

Examples

Assign 20 to N

….

GOTO (20,30, 40,50), N

I = 3

…

GOTO I, (20, 30, 40,50)

20

DO LOOPS

DO 100 I=1, N
A(I) = A(I)*2

100 CONTINUE

21

Parameter Passing

• Pass by Reference for efficiency

SUBROUTINE DIST(D,X,Y)

D = X – Y

IF (D .LT. 0) D= -D

RETURN

END

CALL DIST(DIST1, X1, Y1)

22

Example

SUBROUTINE SWITCH (N)

N = 3

RETURN
END

CALL SWITCH(I)

23

Subroutines

• Implemented using activation records

• No recursion initially

• So only need one activation record per
subprogram.

24

Common Blocks

• Named or un-named

• A way of sharing data between subroutines

• Equivalence allowed accessing the same
memory locations through different names.

• A way to “re-use” storage locations.

5

25

Exercise

• Implement an if then else statement

26

Algol 60

27

Pre-History of Algol 60

• by mid 50's there were starting to be a proliferation of
programming languages/assembly languages/pseudo
codes.

• Interest in a universal programming language.

• European and American groups got together in may
and june of 1958 in Zurich. --> result was algol 58.

• In 8 days, 8 members basically wrote the language.

28

Algol Goals

• new language should be as close as possible to
standard math notation and readable with little
further explanation.

• should be possible to use it for the description
of "computing processes" in publication.

• should be mechanically translatable into
machine programs.

29

Interesting History

• FORMAL GRAMMAR was used for syntactic
description. BNF. IMPORTANT

• LANG was DESIGNED by COMMITTEE. 13
members met for 6 days in 1960.

• Report is a “paradigm of brevity and clarity”
» Most languages today require 1000’s of pages
» BREVITY AND CLARITY contributed to the reputation

as a simple, elegant language.

30

The meetings were exhausting, interminable, and
exhilarating. ... Progress was steady and the output,
ALGOL 60, was more racehorse than camel. This
language proved to be an object of stunning beauty. It
was sufficiently perfect and complete so that ensuing
implementations were able to append necessities,
such as input-output, in the style of ALGOL 60 but
their addition propagated no significant changes in
the body of the original language.

-- Alan Perlis, "The American Side of the Development
of Algol," The History of Programming Languages

6

31

3 Language Levels

• Reference Language
» For use by committee, described in report and

used in official Algol publications

• Publication Language
» Variation on reference language for publication of

algorithms, could have Greek letters

• Hardware Representations
» Condensed languages for machine input

32

Three levels of language

“After two days of probing attitudes and suggestions,
the meeting came to a complete deadlock with one
European member pounding on the table and
declaring: “No! I will never use a period for a
decimal point”. Naturally the Americans considered
the use of comma as decimal point to be beneath
ridicule. That evening Wegstein visited the opposing
camps and proposed defining the three levels of
language.”

Alan Perlis, The American Side of the Development of Algol,
ACM SIGPLAN Noticies, August 1978.

33

Algol Language Features

• Block Structure
• Explicit type declaration for variables
• Scope rules for local variables
• Dynamic lifetimes for variables
• Nested if-then-else expressions and stmts
• Call by value and call by name
• Recursive subroutines
• Arrays with dynamic bounds

34

Syntax and Style

- Free format
- Indentation style

- Algol defined the style of most successors
- Hierarchical structure

- Nesting of environments and control structures

- Identifiers could be > 6 characters

35

Variables and Types

• Data types: integer, real, boolean

• No implicit declarations

• No double precision types

• No complex number types

• Arrays: > 3 dimensions, dynamic bounds, can
start at something other than 0/1

36

I/O

• No I/O

7

37

Binding Time

• BINDING of names to locations is done ON
ENTRY TO A BLOCK, not at compile time
(as in Fortran)

• Stack is central run-time data structure

38

Blocks

• Can use a block of statements anywhere a
single statement is needed.

begin

declarations;

statements

end

39

Blocks support structured programming

• Algol 60
if x=3 then

begin
y:=9; k:=10

end;

• Fortran
IF (X .NEQ. 3) GOTO 100
Y=9
K=10

100 ...

40

Blocks allow nested scopes

begin
integer x;

procedure squid;
begin
integer x;
...
end;

end;

41

Blocks for efficient storage management

begin
...
begin
real array x[1:1000];
...

end;
...
begin
real array y[1:2000];
...

end;
end;

42

Control Structures

• goto

• if-then-else

• for loop

• switch

8

43

Call by value vs. call by name

• Call by Name is default

• call by name: re-evaluate the actual parameter
on every use.
» For actual parameters that are simple variables,

this is the same as call by reference.

» For actual parameters that are expressions, the
expression is re-evaluated on each access.

44

Call by value vs. call by name

begin
integer n;
procedure p(k: integer);

begin
print(k);
n := n+1;
print(k);
end;

n := 0;
p(n+10);
end;

45

Fortran example

SUBROUTINE S(EL, K)
K = 2
EL = 0
RETURN
END
A(1) = A(2) = 1
I=1
CALL S (A(I),I))

46

Algol 60 Example

procedure S (el, k);
integer el, k;
begin

k := 2;
el := 0

end;
A[1] := A[2] := 1;
i := 1;
S (A[i], i);

47

What happens here?

begin
integer n;
procedure p(k: integer);

begin
print(n);
end;

n := 5;
p(n/0);
end;

48

The life of Algol 60

• Didn’t achieve widespread use

• Extremely important in the history of PLs

• Successors: Pascal, Modula-2, Ada, many
more.

• Produced important work on lexical analysis,
parsing, compilation techniques for block-
structured languages.

