
1

11/07/2007 1

Intro to Compilers

CSE 413, Autumn 2007

11-07-2007

11/07/2007 2

Agenda

� What’s a compiler?

� Compilers vs. Interpreters

� Phases of a compiler

11/07/2007 3

And the point is…

� Execute this!

int nPos = 0;

int k = 0;

while (k < length) {

if (a[k] > 0) {

nPos++;

}

}

� How?

11/07/2007 4

Compiler

� Read and analyze entire program

� Translate to semantically equivalent program
in another language

� Presumably easier to execute or more efficient

� Should “improve” the program in some fashion

� Offline process

� Tradeoff: compile time overhead (preprocessing
step) vs execution performance

11/07/2007 5

Compiler vs. Assembler

11/07/2007 6

Assembler

� Principal tasks of an assembler are:

� Replace opcodes and operands with their
machine language encodings

� Replace uses of symbolic names with
actual addresses

� Assembler translates assembly
language into Object code (Machine
code)

2

More Detailed Look at Compiler Phase Structure

Compilation in a Nutshell 1
Source code
(character stream)

Lexical analysis

Parsing

Token stream

Abstract syntax tree
(AST)

Semantic Analysis

if (b == 0) a = b;

if (b) a = b ;0==

if
==

b 0

=

a b

if

==

int b int 0

=

int a
lvalue

int b

boolean
Decorated AST

int
;

;

Compilation in a Nutshell 2

Intermediate Code Generation

Optimization

Code generation

if

==

int b int 0

=

int a
lvalue

int b

boolean int
;

CJUMP ==

MEM

fp 8

+

CONST MOVE

0 MEM MEM

fp 4 fp 8

NOP

+ +

CJUMP ==

CONST MOVE

0 DX CX

NOPCX
CMP CX, 0

CMOVZ DX,CX

program gcd (input, output);

var i,j: integer;

begin

read(i,j);

while i <> j do

if i > j then i := i – j

else j := j – i;

writeln (i)

end.

Syntax Tree for GCD

program gcd (input, output);
var i,j: integer;
begin

read(i,j);
while i <> j do

if i > j then i := i – j
else j := j – i;

writeln (i)
end.

11/07/2007 12

Compilers vs. Interpreters

� Interpreter

� A program that reads a source program
and produces the results of executing that
program

� Compiler

� A program that translates a program from
one language (the source) to another (the
target)

3

11/07/2007 13

Common Issues

� Compilers and interpreters both must
read the input – a stream of characters
– and “understand” it; analysis

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k] > 0

) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

11/07/2007 14

Interpreter

� Interpreter
� Execution engine
� Program execution interleaved with

analysis
running = true;
while (running) {

analyze next statement;
execute that statement;

}

� May involve repeated analysis of some
statements (loops, functions)

11/07/2007 15

Compiler

� Read and analyze entire program

� Translate to semantically equivalent program
in another language

� Presumably easier to execute or more efficient

� Should “improve” the program in some fashion

� Offline process

� Tradeoff: compile time overhead (preprocessing
step) vs execution performance

11/07/2007 16

Typical Implementations

� Compilers
� FORTRAN, C, C++, Java, COBOL, etc.

� Strong need for optimization in many cases

� Interpreters
� PERL, Python, Ruby, awk, sed, sh, csh,

postscript printer, Scheme, Java VM

� Effective if interpreter overhead is low
relative to execution cost of individual
statements

11/07/2007 17

Hybrid approaches

� Well-known example: Java
� Compile Java source to byte codes – Java Virtual

Machine language (.class files)

� Execution
� Interpret byte codes directly, or

� Compile some or all byte codes to native code

� Just-In-Time compiler (JIT) – detect hot spots & compile
on the fly to native code

� Variation: .NET
� Compilers generate MSIL

� All IL compiled to native code before execution

11/07/2007 18

Why Study Compilers?

� Better Understanding Of
Implementation Issues in Programming
Languages:

� How Is “This” Implemented?

� Why Does “This” Run So Slowly?

� Translation appears several places:

� Processing command line parameters

� Converting files/programs from one
language/format to another

4

11/07/2007 19

Structure of a Compiler

� First approximation

� Front end: analysis

� Read source program and understand its
structure and meaning

� Back end: synthesis

� Generate equivalent target language program

Source TargetFront End Back End

11/07/2007 20

Implications

� Must recognize legal programs (& complain
about illegal ones)

� Must generate correct code

� Must manage storage of all variables

� Must agree with OS & linker on target format

Source TargetFront End Back End

11/07/2007 21

More Implications

� Need some sort of Intermediate
Representation(s) (IR)

� Front end maps source into IR

� Back end maps IR to target machine code

� May be multiple IRs – higher level at first,
lower level in later phases

Source TargetFront End Back End

11/07/2007 22

Front End

� Split into two parts

� Scanner: Responsible for converting character
stream to token stream

� Also strips out white space, comments

� Parser: Reads token stream; generates IR

� Both of these can be generated automatically

� Source language specified by a formal grammar

� Tools read the grammar and generate scanner &
parser (either table-driven or hard-coded)

Scanner Parser
source tokens IR

11/07/2007 23

Tokens

� Token stream: Each significant lexical
chunk of the program is represented by
a token

� Operators & Punctuation: {}[]!+-=*;: …

� Keywords: if while return goto

� Identifiers: id & actual name

� Constants: kind & value; int, floating-point
character, string, …

11/07/2007 24

Scanner Example

� Input text
// this statement does very little

if (x >= y) y = 42;

� Token Stream

� Notes: tokens are atomic items, not character
strings; comments are not tokens

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

5

11/07/2007 25

Example

� Possible syntax for numeric constants

digit ::= [0-9]

digits ::= digit+

number ::= digits (. digits)?

([eE] (+ | -)? digits) ?

11/07/2007 26

Scanner DFA Example

[0-9]

Accept INT12

11

other

[0-9]

11/07/2007 27

Parser Output (IR)

� Many different forms

� Engineering tradeoffs that have changed
over time

� Common output from a parser is an
abstract syntax tree

� Essential meaning of the program without
the syntactic noise

11/07/2007 28

Parser Example

� Token Stream Input � Abstract Syntax Tree

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

11/07/2007 29

Context-Free Grammars

� Formally, a grammar G is a tuple <N,Σ,P,S>
where

� N a finite set of non-terminal symbols

� Σ a finite set of terminal symbols

� P a finite set of productions
� A subset of N × (N ∪ Σ)*

� S the start symbol, a distinguished element of N
� If not specified otherwise, this is usually assumed to be

the non-terminal on the left of the first production

11/07/2007 30

Grammar for a Tiny Language

� program ::= statement | program statement

� statement ::= assignStmt | ifStmt

� assignStmt ::= id = expr ;

� ifStmt ::= if (expr) stmt

� expr ::= id | int | expr + expr

� Id ::= a | b | c | i | j | k | n | x | y | z

� int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

6

11/07/2007 31

Example

a = 1 ; if (a + 1) b = 2 ;

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) stmt
expr ::= id | int | expr + expr
Id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

program

program

statement
statement

ifStmt

assignStmt
statement

expr assignStmt

expr expr

intid

id expr

int

id expr

int

G

w

11/07/2007 32

Static Semantic Analysis

� During or (more common) after parsing

� Type checking

� Check for language requirements like
proper declarations, type compatibility

� Preliminary resource allocation

� Collect other information needed by back
end analysis and code generation

11/07/2007 33

Back End

� Responsibilities

� Translate IR into target machine code

� Should produce fast, compact code

� Should use machine resources effectively

� Registers

� Instructions

� Memory hierarchy

11/07/2007 34

Back End Structure

� Typically split into two major parts with
sub phases
� “Optimization” – code improvements

� May well translate parser IR into other IRs

� We probably won’t have time to do much with
this part of the compiler, alas

� Code generation
� Instruction selection & scheduling

� Register allocation

11/07/2007 35

The Result

� Input
if (x >= y)

y = 42;

� Output

mov eax,[ebp+16]

cmp eax,[ebp-8]

jl L17

mov [ebp-8],42

L17:

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

