
1

11/28/2007 1

x86 Architecture

CSE413

Autumn 2007

11/28/2007 2

Agenda

� Learn x86 architecture

� Core 32-bit part only

� Ignore crufty, backward-compatible things

� Target language for D

� After we’ve reviewed the x86 we’ll look
at how to map language constructs to
code

11/28/2007 3

Why do we need to know
assembly language?

� What compilers generate

� What your compiler will generate

� Helps understand how different
language features are implemented and
why they are efficient/inefficient

� ex. Why do people sometimes say that
calling a function is “expensive” or that
recursion is “inefficient”?

11/28/2007 4

gcc and assembly

> gcc –S hello.c
� Generates hello.s , a text file containing

assembly instructions

� Your compiler will also be creating a .s file

> gcc –o hello.exe hello.s
� Creates an executable from hello.s

� Similarly, we will be compiling the output of your
compiler with gcc (combined with a bootstrap C
file I will give you) to create an executable.

11/28/2007 5

x86 Selected History

Hyper-Threading55 M2.2 GHz2001Xeon

Shorter pipelines vs P477 M1.6 GHz2003Pentium M

NetBurst core, SSE242 M1.5 GHz2000Pentium 4

SSE (Streaming SIMD)28 M700 MHz1999Pentium III

P6 w/MMX7 M266 MHz1997Pentium II

P6 core, bigger caches5.5 M200 MHz1995Pentium Pro

MMX on late models3.1 M60 MHz1993Pentium

On-board FPU1.2 M25 MHz1989486

32-bit regs., paging275 K20 MHz1985386

Protected mode134 K12.5 MHz1982286

16-bit regs., segments29 K8 MHz19788086

FeaturesTransistorsIntro ClockIntro YearProcessor

11/28/2007 6

And It’s Backward-Compatible!

� Pentium/Xeon processors will run code
written for the 8086(!)

� ∴ Much of the Intel descriptions of the
architecture are loaded down with modes and
flags that obscure the modern, fairly simple
32-bit processor model
� Links to the Intel manuals on the course web

� These slides try to cover the core x86 32-bit
instructions

2

11/28/2007 7

Assembler source formats

� D compiler project output will be an assembly
language source program
� We will let the assembler handle the translation to binary

encodings, address resolutions, etc.

� Examples here use Intel/Microsoft MASMformat
� MASM is an assembler included in Visual Studio.NET

� For our project we will use AT &T/GNU as format
� Slightly different syntax, but instructions are the same.

Differences are noted in the “x86 Overview” and “Code
Generation for D” web pages.

11/28/2007 8

Statements

� Format is:

optLabel: opcode operands ; comment

� optLabel is an optional label

� opcode and operands make up the assembly language
instruction

� Anything following a ‘;’ is a comment

� Language is very free-form
� Comments and labels may appear on separate lines by

themselves (we’ll take advantage of this)

In GNU as, ‘#’ is used instead of ‘;’

11/28/2007 9

x86 Memory Model

� 8-bit bytes, byte addressable

� 16-, 32-, 64-bit words

� (32 bit = doublewords), (64 bit = quadwords)

� Usually data should be aligned on “natural”
boundaries; huge performance penalty on modern
processors if it isn’t

� Little-endian – address of a 4-byte integer is
address of low-order byte

11/28/2007 10

Processor Registers

� Eight 32-bit, mostly general purpose registers

� eax, ebx, ecx, edx, esi, edi

� ebp (base pointer), esp (stack pointer)

� Other registers:

� Not directly addressable, you will not use these.

� 32-bit eflags register

� Holds condition codes, processor state, etc.

� 32-bit “instruction pointer” eip
� Holds address of first byte of next instruction to execute

11/28/2007 11

Registers in x86

11/28/2007 12

Processor Fetch-Execute Cycle

� Basic cycle

while (running) {

fetch instruction beginning at eip address

eip <- eip + instruction length

execute instruction

}

� Execution continues sequentially unless a
jump is executed, which stores a new “next
instruction” address in eip

3

11/28/2007 13

Instruction Format

� Typical data manipulation instruction

opcode dst, src

� Meaning is

dst <- dst op src

(*Note in GNU as the order is reversed: opcode src, dst) 11/28/2007 14

Instruction Operands

� Normally:
� one operand is a register

� the other is a register, memory location, or
integer constant

� In particular, we can’t have both operands
be memory locations – not enough bits to
encode this

11/28/2007 15

x86 Memory Stack

� Register esp points to the “top” of stack

� Dedicated for this use; don’t use otherwise

� Points to the last 32-bit doubleword pushed onto
the stack (not to the “next available location”)

� Should always be doubleword aligned

� Access in 4-byte increments, or

� Use pop and push

� Stack grows towards lower memory
addresses (i.e. towards zero)

11/28/2007 16

Stack Instructions

push src *pushl

� esp <- esp – 4;

� memory[esp] <- src
(e.g., push src onto the stack)

pop dst *popl

� dst <- memory[esp];

� esp <- esp + 4
(e.g., pop top of stack into dst and logically
remove it from the stack)

11/28/2007 17

Stack Frames

� When a method is called, a stack frame is
traditionally allocated on the top of the stack
to hold its local variables

� Frame is popped on method return

� By convention, ebp (base pointer) points to a
known offset into the stack frame

� Local variables and parameters referenced relative
to ebp

11/28/2007 18

Operand Address Modes

� These should cover most of what we’ll
need:

mov eax, 17 ; store 17 in eax

mov eax, ecx ; copy ecx to eax

mov eax, [ebp-12] ; copy memory to eax

mov [ebp+8], eax ; copy eax to memory

4

11/28/2007 19

Addressing Memory
(ignorable details)

Memory address can be
specified by adding
together up to:

- 2 registers, and

- 1 32-bit signed constant

- One register can be
optionally pre-multiplied
by 2,4,8.

mov eax, ebx

mov eax, [ebx]

mov [var], ebx

mov eax, [esi -4]

mov [esi+eax], cl

mov edx, [esi+4*ebx]

Incorrect: (why?)

mov eax, [ebx – ecx]

mov [eax+esi+edi], ebx

mov [4*eax+2*ebx], ecx
11/28/2007 20

Operand Address Modes
(ignorable details)

� In full generality, a memory address can combine the
contents of two registers (with one being scaled) plus
a constant displacement:

[basereg + index*scale + constant]

� Scale can be 2, 4, 8

� Main use is for array subscripting
� Example: suppose

� Array of 4-byte ints
� Address of the array A is in ecx

� Subscript i is in eax

� Code to store the value 17 in A[i] would be:

11/28/2007 21

Load Effective Address
(ignorable details)

� The unary & operator in C

lea dst, src ; dst <- address of src

� dst must be a register

� Address of src includes any address
arithmetic or indexing

� Useful to capture addresses for pointers,
reference parameters, etc.

11/28/2007 22

Example

mov ecx, eax

mov edx, [ebx]

mov esi, [edx+eax+4]

mov [esi], 45

mov [a], 15

lea edi, [a]

Address
Memory

100

104

i: 108

112

116

200

8

eax

ebx

ecx

edx

esi

edi

a: 300

204

304

100

104

16

3

200

11/28/2007 23

Basic Data Movement and
Arithmetic Instructions

mov dst,src

� dst <- src

add dst,src

� dst <- dst + src

sub dst,src

� dst <- dst – src

inc dst

� dst <- dst + 1

dec dst

� dst <- dst - 1

neg dst

� dst <- - dst
(2’s complement
arithmetic negation)

(*movl, addl, subl, incl, decl, negl) 11/28/2007 24

Integer Multiply

imul dst, src

� dst <- dst * src

� 32-bit product

� dst must be a
register

5

11/28/2007 25

Bitwise Operations

and dst, src

� dst <- dst & src

or dst, src

� dst <- dst | src

xor dst, src

� dst <- dst ^ src

not dst

� dst <- ~ dst
(logical or 1’s
complement)

11/28/2007 26

Shifts and Rotates

shl dst, count
� dst shifted left count
bits

shr dst, count
� dst <- dst shifted
right count bits (0
fill)

sar dst, count
� dst <- dst shifted
right count bits (sign
bit fill)

rol dst, count
� dst <- dst rotated
left count bits

ror dst, count
� dst <- dst rotated
right count bits

11/28/2007 27

Uses for Shifts and Rotates

� Can often be used to optimize
multiplication and division by small
constants

� There are additional instructions that
shift and rotate double words, use a
calculated shift amount instead of a
constant, etc.

11/28/2007 28

Control Flow - GOTO

� At this level, all we have is goto and
conditional goto

� Loops and conditional statements are
synthesized from these

� A jump (goto) stores the destination address
in eip, the register that points to the next
instruction to be fetched

� Optimization note: jumps play havoc with
pipeline efficiency; much work is done in
modern compilers and processors to minimize
this impact

11/28/2007 29

Unconditional Jumps

jmp dst

� eip <- address of dst

� Assembly language note: dst will be a
label. Execution continues at first machine
instruction in the code following that label

� Can have multiple labels on separate lines
in front of an instruction

11/28/2007 30

Conditional Jumps

� Most arithmetic instructions set bits in
eflags to record information about the
result (zero, non-zero, positive, etc.)

� True of add, sub, and, or; but not imul or
idiv

� Other instructions that set eflags

cmp dst, src ; compare dst to src

6

11/28/2007 31

Conditional Jumps Following
Arithmetic Operations

jz label ; jump if result == 0

jnz label ; jump if result != 0

jg label ; jump if result > 0

jng label ; jump if result <= 0

jge label ; jump if result >= 0

jnge label ; jump if result < 0

jl label ; jump if result < 0

jnl label ; jump if result >= 0

jle label ; jump if result <= 0

jnle label ; jump if result > 0

11/28/2007 32

Compare and Jump
Conditionally

� Very common pattern: compare two
operands and jump if a relationship
holds between them

� Would like to do this
jmpcond op1,op2,label

but can’t, because 3-address
instructions aren’t included in the
architecture

11/28/2007 33

cmp and jcc

� Instead, use a 2-instruction sequence

cmp op1,op2

jcc label

where jcc is a conditional jump that is
taken if the result of the comparison
matches the condition cc

11/28/2007 34

Conditional Jumps Following a
cmp instruction

cmp op1, op2
The possibilities include:

je label ; jump if op1 == op2
jne label ; jump if op1 != op2
jg label ; jump if op1 > op2
jng label ; jump if op1 <= op2
jge label ; jump if op1 >= op2
jnge label ; jump if op1 < op2
jl label ; jump if op1 < op2
jnl label ; jump if op1 >= op2
jle label ; jump if op1 <= op2
jnle label ; jump if op1 > op2

11/28/2007 35

Subroutine Calling Issues?

11/28/2007 36

Function Call and Return

� The x86 instruction set itself only
provides for transfer of control (jump)
and return
� Stack is used to capture return address
and recover it

� Everything else – parameter passing,
stack frame organization, register usage
– is a matter of convention and not
defined by the hardware

7

11/28/2007 37

call and ret Instructions

call label
� Push address of next instruction and jump

� esp <- esp – 4;
� memory[esp] <- eip

� eip <- address of label

ret
� Pop address from top of stack and jump

� eip <- memory[esp];
� esp <- esp + 4

� WARNING! The word on the top of the stack had
better be an address, not some leftover data

11/28/2007 38

Win 32 C Function Call
Conventions

� Wintel compilers obey the following
conventions for C programs

� We’ll use these conventions in our code

11/28/2007 39

Win32 C Register Conventions

� These registers must be restored to their
original values before a function returns, if
they are altered during execution

esp, ebp, ebx, esi, edi
� Traditional: push/pop from stack to save/restore

� A function may use the other registers (eax,
ecx, edx) however it wants, without having to
save/restore them

� A 32-bit function result is expected to be in
eax when the function returns

11/28/2007 40

Call Site

� Caller is responsible for:

� Pushing arguments on the stack from right
to left

� Execute call instruction

� “Pop” arguments from stack after return

� For us, this means add 4*(# arguments) to esp
after the return, since everything is a 32-bit
variable (int)

11/28/2007 41

Example Function

� Source code

int sumOf(int x, int y) {

int a, int b;

a = x;

b = a + y;

return b;

}

11/28/2007 42

Stack Frame for sumOf

int sumOf(int x, int y) {
int a, int b;
a = x;
b = a + y;
return b;

}

8

11/28/2007 43

Call Example

n = sumOf(17,42)

push 42 ; push args

push 17

call sumOf ; jump &

; push addr

add esp,8 ; pop args

mov [ebp+offsetn],eax ; store result

11/28/2007 44

Callee

� Called function must do the following
� Save registers if necessary

� Allocate stack frame for local variables

� Execute function body

� Ensure result of non-void function is in eax

� Restore any required registers if necessary

� Pop the stack frame

� Return to caller

11/28/2007 45

Win32 Function Prologue

� The code that needs to be executed before
the statements in the body of the function
are executed is referred to as the prologue

� For a Win32 function f, it looks like this:
f: push ebp ; save old frame pointer

mov ebp,esp ; new frame ptr is top of
; stack after arguments and
; return address are pushed

sub esp,”# bytes needed”
; allocate stack frame

11/28/2007 46

Win32 Function Epilogue

� The epilogue is the code that is executed to obey a
return statement (or if execution “falls off” the
bottom of a void function)

� For a Win32 function, it looks like this:
mov eax,”function result”

; put result in eax if not already

; there (if non-void function)

mov esp,ebp ; restore esp to old value

; before stack frame allocated

pop ebp ; restore ebp to caller’s value

ret ; return to caller

11/28/2007 47

Assembly Language Version

;; int sumOf(int x, int y) {
;; int a, int b;
sumOf:

push ebp ; prologue
mov ebp,esp
sub esp, 8

;; a = x;
mov eax,[ebp+8]
mov [ebp-4],eax

;; b = a + y;
mov eax,[ebp-4]
add eax,[ebp+12]
mov [ebp-8],eax

;; return b;
mov eax,[ebp-8]
mov esp,ebp
pop ebp
ret

;; }

11/28/2007 48

C/C++ Calling Convention: Caller

Caller (before you call the callee)

� Save caller-saved registers (EAX, ECX, EDX)

� Push parameters on stack (in inverted order)

� Call !!

Caller (when you return from the callee)

� Pop parameters off stack

� Return value will be in EAX

� Restore caller-saved registers

9

C/C++ Calling Convention: Callee

Callee (prologue)

� Push caller’s EBP onto stack, copy ESP into EBP

� Allocate local variables on stack

� Save callee-saved registers (EBX, EDI, ESI)

� [then actually do the stuff in the callee function]

Callee (epilogue)

� Put return value in EAX

� Restore callee-saved registers

� De-allocate local variables mov esp, ebp

� Restore caller’s EBP pop ebp

� ret
11/28/2007 50

Caller-Saved Registers

� (EAX, ECX, EDX)

� Caller saves these registers if it cares
about the values currently in those
registers

� (The compiler will tend to put
temporary values in these registers)

11/28/2007 51

Callee-Saved Registers

� (EBX, ESI, EDI)

� Callee saves these registers if it needs
more registers than just EAX, ECX, EDX

� (The compiler will tend to put long-lived
values in these registers)

