
1

11/30/2007 1

Code Generation

CSE413

Autumn 2007

11/30/2007 2

Compiler Structure (review)

Source Target

Scanner

Parser
Middle

(optimization)

Code Gen

characters

tokens

IR

IR (maybe different)

Assembly code

11/30/2007 3

What We Need

� To run a D program:

� Space needs to be allocated for a stack
and a heap

� ESP and other registers need to have
sensible initial values

� We need some way to communicate with
the outside world (I/O)

11/30/2007 4

Bootstraping from C

� Idea: take advantage of the existing C
runtime library

� Write a small C main program that calls
the main method in the assembly you
generate as if it were a C function.
� C’s standard library provides the execution
environment

� We can write C functions for get() and
put() and call them from our asm code.

11/30/2007 5

Bootstrap Program

� The bootstrap will be a tiny C program
that calls your compiled code as if it
were an ordinary C function

� It also contains some functions that
compiled code can call as needed

� Mini “runtime library”

� get(), put()

11/30/2007 6

Example Bootstrap Program

#include <stdio.h>

int d$main(); /* prototype for external function */

int main() {

printf("\nValue returned from D main: %d.\n", d$main());

return 0;

}

/* return next integer from standard input */

int get() { scanf.... }

/* write x to standard output */

int put(int x) { printf... }

2

11/30/2007 7

Code Generation in Our
Project

11/30/2007 8

Generating .asm Code

� Suggestion: isolate the actual output
operations in a handful of routines
� Modularity & saves some typing

� Possibilities
// write code string s to .asm output

void gen(String s) { … }

// write “op src,dst” to .asm output

void genbin(String op, String src, String dst) { … }

// write label L to .asm output as “L:”

void genLabel(String L) { … }

� A handful of these methods should do it

11/30/2007 9

Agenda

� Mapping source code to x86

� Today: Stuff Needed for project: basic
statements and expressions

� Next: Other cool stuff: Object
representation, method calls, and dynamic
dispatch

11/30/2007 10

Conventions for Examples

� Examples show code snippets in isolation

� A “real” code generator needs to worry about things
like :
� Which registers are busy at which point in the program

� Which registers to spill into memory when a new register is
needed and no free ones are available

� You won’t need to worry about this for your compiler!

� Register eax used below as a generic example
� Rename as needed for more complex code involving multiple

registers

� But for the most part in our compiler we can stick to just
using eax and ecx.

11/30/2007 11

A Simple Code Generation
Strategy

� Priority: quick ‘n dirty correct code first,
optimize later if time

� Treat the x86 as a 1-register stack
machine

11/30/2007 12

x86 as a Stack Machine

� Idea: Use x86 stack for expression evaluation with
eax as the “top” of the stack

� Invariant: Whenever an expression (or part of one)
is evaluated at runtime, the result is in eax

� If a value needs to be preserved while another
expression is evaluated, push eax, evaluate, then pop
when needed
� Remember: always pop what you push

� Will produce lots of redundant, but correct, code

3

11/30/2007 13

Constants

� Source
17

� x86
mov eax, 17

� Idea: realize constant value in a register

� Aside: Optimization: if constant is 0
xor eax, eax

11/30/2007 14

Use (RHS) of Variables

� Source
(use of variable) a

� x86
mov eax, [ebp+ -8]

� All variables in our programs will be addressable
relative to ebp.

� In this example a is a local variable.
� If the offset was positive, it would be a parameter.
� Check your symbol table to generate the correct
offset for a given variable.

11/30/2007 15

Assign (LHS) of Variables

� Source
a = exp

� x86
<code for exp, leaves result in eax>

mov [ebp+ -8], eax

11/30/2007 16

Example: var = exp;

� Assuming that var is a local variable

� <code for exp>

� Generates code that leaves the result of
evaluating exp in eax

� gen(mov [ebp+offset of variable],eax)

11/30/2007 17

Example: Generate Code for
Constants and Identifiers

� Integer constants, say 17

gen(mov eax,17)

� leaves value in eax

� Variables

gen(mov eax, [ebp + appropriate offset])

� also leaves value in eax

11/30/2007 18

Assignment Statement

� Source
var = exp;

� x86
<code to evaluate exp,
leaving result in register eax>

mov [ebp+offsetvar], eax

4

11/30/2007 19

Binary +

� Source
exp1 + exp2

� x86
<code evaluating exp1 into eax>

<code evaluating exp2 into ecx>

add eax, ecx

11/30/2007 20

Example: Generate Code for
exp1 + exp2

� <code to calculate exp1>

� generates code to evaluate exp1 and put result in eax

� gen(push eax)

� generate a push instruction

� <code to calculate exp2>

� generates code for exp2; result in eax

� gen(pop ecx)

� pop left argument into ecx; cleans up stack

� gen(add eax, ecx)
� perform the addition; result in eax

11/30/2007 21

Binary -, *

� Same as +

� Use sub for –

� // Be sure to get order of operands correct!!

� Use imul for *

� Aside: Optimizations

� Use left shift to multiply by powers of 2

� Use x+x instead of 2*x, etc. (faster)

� Use dec for x-1

11/30/2007 22

Control Flow

� Basic idea: decompose higher level operation
into conditional and unconditional gotos

� In the following, jfalse is used to mean:
“jump when a condition is false”
� No such instruction on x86

� Will have to realize with appropriate sequence of
instructions to set condition codes followed by
conditional jumps

� Normally won’t actually generate the value “true”
or “false” in a register

11/30/2007 23

While

� Source
while (cond) stmt

� x86
test: <code evaluating cond>

jfalse done

<code for stmt>

jmp test

done:

11/30/2007 24

Labels

� In x86 assembly language we’ll need to
produce unique labels for each if, while,
etc.

� Labels can appear on a line by
themselves.

jmp label

� will start execution on the first line of x86
code it finds after seeing the label.

5

11/30/2007 25

Example:
Control Flow: Unique Labels

� Needed: a String-valued method that
returns a different label each time it is
called (e.g., L1, L2, L3, …)
� Variation: a set of methods that generate
different kinds of labels for different
constructs (can really help readability of
the generated code)

� (while1, while2, while3, …; if1, if2, …; else1,
else2, ….)

11/30/2007 26

If

� Source
if (cond) stmt

� x86
<code evaluating cond>

jfalse skip

<code for stmt>

skip:

11/30/2007 27

If-Else

� Source
if (cond) stmt1 else stmt2

� x86
<code evaluating cond>

jfalse else

<code for stmt1>

jmp done

else: <code for stmt2>

done:

11/30/2007 28

Boolean Expressions

� What do we do with this?
x > y

� It is an expression that evaluates to
true or false
� Could generate the value (0/1 or whatever
the local convention is)

� But normally we don’t want/need the
value; we’re only trying to decide whether
to jump

11/30/2007 29

Code for exp1 > exp2

� Basic idea: designate jump target, and
whether to jump if the condition is true
or if it is false

� Example: exp1 > exp2, target L123,
jump on false

<evaluate exp1 to eax>

<evaluate exp2 to ecx>

cmp eax, ecx

jng L123

11/30/2007 30

Example exp1 < exp2

� Similar to other binary operators
� Difference: context is a target label and whether to

jump if true or false
� x86:

<evaluate exp1 to eax>
gen(push eax)
<evaluate exp2 to eax>// eax contains exp2
gen(pop ecx) // ecx contains exp1
gen(cmp ecx, eax)
gen(condjump targetLabel)

� appropriate conditional jump depending on sense of test

6

11/30/2007 31

Boolean Operators: !

� Source
! bool-exp

� Context: evaluate bool-exp and jump to
L123 if false (or true)

� To compile !, reverse the sense of the
test: evaluate bool-exp and jump to
L123 if true (or false)

11/30/2007 32

Example: foo (exp1, exp2)
<evaluate exp1; result in eax>

push eax ; push parameter

< evaluate exp2; result in eax>

push eax ; push parameter

call foo ; call external put routine

add esp, 8 ; pop parameters

� For our compiler we will push parameters
from left to right (this deviates from the
standard calling convention but will make
code generation slightly easier)

11/30/2007 33

Example: put(exp)

< evaluate exp; result in eax>

push eax ; push parameter

call _put ; call external put routine

add esp,4 ; pop parameter

� Calls to get and put routines must have
their name pre-pended with an underscore

� Otherwise compile like any other function!

11/30/2007 34

Function Definitions

� Generate label for function

� Generate function prologue

� Generate code for statements in order

� Method epilogue will be generated as part
of each return statement (next)

11/30/2007 35

Example: Function Definition

int foo(int a, int b) { ...

� x86
gen(function_label:); // generate label for function body

gen(push ebp); // save ebp

gen(mov ebp, esp); // set up frame pointer

gen(sub esp, #_bytes_for_locals); // allocate space for
// local variables

<generated code for function body follows>

11/30/2007 36

Example: return exp;

Generate method epilogue to unwind
the stack frame; end with ret
instruction

� x86
<code for exp, leaving result in eax>

gen(mov esp, ebp) // free local vars

gen(pop ebp)

gen(ret)

