
1

12/03/2007 1

Compiling OO Languages

CSE413

Autumn 2007

12/03/2007 2

Agenda for Today

� Object representation and layout

� Field access

� What is this?

� Object creation - new

� Method calls
� Dynamic dispatch

� Method tables

� Super

� Runtime type information

12/03/2007 3

C++ Example
Person aPerson;
Student aStudent;
// Static binding done at compile time
// Function called depends on the declared type
// of the variable used.
aPerson.print_mailing_label();
aStudent.print_mailing_label();

Person *p_ptr;
p_ptr = &aPerson; // OR p_ptr = &aStudent;
// Dynamic binding done at runtime
// Function called depends on what type the object

p_ptr points to is, could be a Person or a Student
p_ptr->print_mailing_label();

Notes: 1)The student class inherits from (is a subclass of) the Person class
2) Both classes have their own implementation of print_mailing_label();

12/03/2007 4

Dynamic vs. Static binding

� Static method binding:

� The compiler can figure out at compile time what
function to call.

� C++ has this by default, can designate functions
as virtual to get dynamic binding.

� Dynamic method binding:

� Compiler must instead generate code that will
figure out at run-time what function to call.

� Java uses dynamic binding for functions by
default.

12/03/2007 5

Object Representation

� The naïve explanation is that an object
contains:

� Fields declared in its class and in all superclasses

� Methods declared in its class and in all superclasses

� When a method is called, the method inside
that particular object is called.

� But we don’t want to really implement it this way –
we only want one copy of each method’s code

12/03/2007 6

Actual representation

� Each object contains:

� An entry for each field (variable)

� A pointer to a runtime data structure
“describing the class”

� Key component: method dispatch table

2

12/03/2007 7

Method Dispatch Tables

� Often known as “vtables”

� One pointer per method

� Offsets fixed at compile time

� One instance of this per class,
(not per object)

12/03/2007 8

Member Lookup - vtable

12/03/2007 9

Method Tables and Inheritance

� One possible simple implementation:
� Method table for extended class has pointers to
methods declared in it

� Method table also contains a pointer to parent
class method table

� Method dispatch
� Look in current table and use it if there
� Look in parent class table if not there

� Repeat until found

� Actually used in some dynamic systems (e.g.
SmallTalk, etc.)

class foo {
int a;
double b;
char c;

public:
virtual void k();
virtual int l();
virtual void m();
virtual double n();
...

} F;

class bar : public foo {
int w;

public:
void m(); // overrides version in foo
virtual double s ()
virtual char *t ();

} B;

12/03/2007 11

O(1) Method Dispatch

� Better Idea: First part of method table for
extended class has pointers in same order as
parent class
� BUT pointers actually refer to overriding methods
if these exist

� ∴ Method dispatch is indirect using fixed offsets
known at compile time – O(1)

� In C: *(object->vtbl[offset])(parameters)

� Pointers to additional methods in extended
class are included in the table following
inherited/overridden ones

Single Inheritance

3

Single Inheritance

12/03/2007 14

Method Dispatch Footnotes

� Still want pointer to parent class
method table for other purposes

� Casts and instanceof

class Bird {

private:
int age;

double weight;
char favorite_letter;

public:
void eat();

virtual int sleep();
virtual void speak();

}

class Eagle : public Bird {

private:
int zip_code;

public:
virtual void speak(); // overrides Bird version

virtual double findfish();
void look_important();

virtual void buildnest();
}

Bird B;
Eagle E;

12/03/2007 16

What if we had to generate code for
objects in a language like Java??

� Need to explore

� Object layout in memory

� Compiling field references

� Implicit and explicit use of “this”

� Representation of vtables

� Object creation – new

� Code for dynamic dispatch

� Including implementing “super.f”

� Runtime type information – instanceof and casts

12/03/2007 17

Object Layout

� Typically, allocate fields sequentially

� Follow processor/OS alignment
conventions when appropriate

� Use first 32 bits of object for pointer to
method table/class information

� Objects are allocated on the heap
� No actual representation in the generated
code

12/03/2007 18

Local Variable Field Access

� Source
int n = obj.field;

� X86

� (Assuming that obj is a local variable in the
current method) :

mov eax, [ebp + offsetobj]

mov eax, [eax + offsetfield]

mov [eax + offsetn], eax

Assuming like in java where use . for access,
and objects are always allocated on the heap

4

12/03/2007 19

Example: Local Variable Field Access

� Source
Bird b_ptr = new Eagle()

int n = b_ptr.age;

� X86
mov eax, [ebp + offsetb_tr] ; get address of object

mov eax, [eax + offsetage] ; get value of field

mov [eax + offsetn], eax ; store result in n

Assuming like in java where use . for access,
and objects are always allocated on the heap

12/03/2007 20

Local Fields

� A method can refer to fields in the receiving
object either explicitly as “this.f” or implicitly
as “f”

� Both compile to the same code – an implicit “this.”
is assumed if not present

� Mechanism: a reference to the current
object is an implicit parameter to every
method

� Can be in a register or on the stack

12/03/2007 21

Implementing the this pointer

� When you write:

void setIt(int it) {

this.it = it;

}

…

obj.setIt(42);

� You really get:

void setIt(ObjType this, int it) {

this.it = it;

}

…

setIt(obj,42);

12/03/2007 22

x86 Conventions (C++)

� ecx is traditionally used as “this”

� Add to method call
mov ecx, receivingObject ; ptr to object

� Do this after arguments are evaluated and
pushed, right before dynamic dispatch
code (more about that to come)

12/03/2007 23

x86 Local Field Access

� Source
int n = fld; or int n = this.fld;

� X86: ???

12/03/2007 24

x86 Method Tables (vtbls)

� Generate these in the assembly language
source program

� Need to pick a naming convention for method
labels; one possibility:
� For methods, classname$methodname

� Need something more sophisticated to implement
overloading

� For the vtables themselves, classname$$

� First method table entry points to superclass
table

5

class foo {
int a;
double b;
char c;

public:
virtual void k();
virtual int l();
virtual void m();
virtual double n();
...

} F;

class bar : public foo {
int w;

public:
void m(); // overrides version in foo
virtual double s ()
virtual char *t ();

} B;

12/03/2007 26

Method Tables For Foo and Bar

class foo {
...
virtual void k();
virtual int l();
virtual void m();
virtual double n();

}
class bar : public foo {

...
void m(); // overrides vers in foo
virtual double s ()
virtual char *t ();

};

.data
foo$$ dd 0 ; no superclass

dd foo$k
dd foo$l
dd foo$m
dd foo$n

bar$$ dd foo$$; parent
dd foo$k
dd foo$l
dd bar$m
dd foo$n
dd bar$s
dd bar$t

12/03/2007 27

Method Table Footnotes

� Key point: First four method entries in
bar’s method table are pointers to
methods declared in foo in exactly the
same order

∴ Compiler knows correct offset for a
particular method regardless of whether
that method is overridden

12/03/2007 28

Object Creation – new

� Steps needed
� Call storage manager (malloc or similar) to
get the raw bits

� Store pointer to method table in the first 4
bytes of the object

� Call a constructor (pointer to new object,
this, in ecx)

� Result of new is pointer to the constructed
object

12/03/2007 29

Method Calls

� Steps needed

� Push arguments as usual

� Put pointer to object in ecx (new this)

� Get pointer to method table from first 4
bytes of object

� Jump indirectly through method table

12/03/2007 30

Method Call

� Source
obj.meth(…);

� X86
<push arguments from right to left> ; (if needed)

mov ecx, [ebp+offsetobj] ; get pointer to object

mov eax, [ecx] ; get pointer to method table

call [eax+offsetmeth] ; call indirect via method tbl

<pop arguments> ; (if needed)

6

12/03/2007 31

Runtime Type Checking

� Use the method table for the class as a
“runtime representation” of the class

� The test for “o instanceof C” is:

� Recursively, get the superclass’s method table
pointer from the method table and check that

� Stop when you reach Object (or a null pointer,
depending on how you represent things)

� If no match when you reach the top of the chain, result
is “false”

12/03/2007 32

More Code Generation

12/03/2007 33

Other Control Flow: switch

� Naïve: generate a chain of nested if-else if
statements

� Better: switch is designed to allow an O(1)
selection, provided the set of switch values is
reasonably compact

� Idea: create a 1-D array of jumps or labels
and use the switch expression to select the
right one
� Need to generate the equivalent of an if statement
to ensure that expression value is within bounds

12/03/2007 34

Switch

� Source
switch (exp) {
case 0: stmts0;
case 1: stmts1;
case 2: stmts2;

}

� X86
<put exp in eax>
“if (eax < 0 || eax > 2)

jmp defaultLabel”
mov eax, swtab[eax*4]
jmp eax

.data
swtab dd L0

dd L1
dd L2
.code

L0: <stmts0>
L1: <stmts1>
L2: <stmts2>

12/03/2007 35

Arrays

� Several variations

� C/C++/Java
� 0-origin; an array with n elements contains
variables a[0]…a[n-1]

� 1 or more dimensions; row major order

� Key step is to evaluate a subscript
expression and calculate the location of
the corresponding element

12/03/2007 36

0-Origin 1-D Integer Arrays

� Source
exp1[exp2]

� x86

