
1

12/05/2007 1

Linking & Runtime

CSE413

Autumn 2007

12/05/2007 2

Agenda

� Linking

� Memory Management

12/05/2007 3

Runtime Systems

� Compiled code + runtime system = executable

The runtime system can include library functions for:
� I/O, for console, files, networking, etc.

� graphics libraries, other third-party libraries

� reflection: examining the static code & dynamic state of
the running program itself

� threads, synchronization

� memory management

� system access, e.g. system calls

12/05/2007 4

Static Linking Example

12/05/2007 5

Libraries

� contain lots of code, you don’t need all
of it

� linkers search the library and only pull
in the code that you need.

� libraries are often stored in a special
format to make this easier.

12/05/2007 6

Dynamic Linking

Observations:

� Several instances of a program are
often live at the same time.

� Programs share code (graphics
routines)

� Libraries often improve over time

2

12/05/2007 7

Dynamic Linking (cont.)

� OS sets up a mapping so that all
instances of the same program share
the same read-only copy of the code.

12/05/2007 8

Memory Management

� Program Text, Globals, Stack, Heap

� What do we want to be able to do with the heap?
� allocating a new (heap) memory block

� deallocating a memory block when it’s done

� deallocated blocks will be recycled

� Manual memory management:
the programmer decides when memory blocks are done, and

explicitly deallocates them
(e.g. C: malloc and free, C++: new, delete)

� Automatic memory management:
the system automatically detects when memory blocks are

done, and automatically deallocates them

(eg. Scheme, Java)

12/05/2007 9

Manual memory management

� Typically use "free lists"

� Runtime system maintains a linked list of free
blocks
� to allocate a new block of memory,

� scan the list to find a block that’s big enough

� if no free blocks, allocate large chunk of new memory
from OS

� put any unused part of newly-allocated block back on
free list

� to deallocate a memory block, add to free list
� store free-list links in the free blocks themselves

12/05/2007 10

Automatic memory management
(A.k.a. garbage collection)

Automatically identify blocks that are "dead",
deallocate them

� ensure no dangling pointers, no storage leaks

� can have faster allocation, better memory locality

� General styles:
� reference counting

� mark/sweep

� copying

12/05/2007 11

Reference Counting

For each heap-allocated block, maintain
count of # of pointers to that block

� when create block, ref count = 0

� when create new ref to block, increment ref
count

� when remove ref to block, decrement ref count

� if ref count goes to zero, then delete block

12/05/2007 12

Evaluation of Reference
Counting

+ local, incremental work - cannot reclaim cyclic
structures

- high run-time overhead
(10-20%)

- space cost to hold the
reference count

3

12/05/2007 13

Mark/sweep collection

� Stop the application when heap fills

� Phase 1: trace reachable blocks, using e.g.
depth-first traversal
� set mark bit in each block

� Phase 2: sweep through all of memory
� add unmarked blocks to free list

� clear marks of marked blocks, to prepare for next
GC

� Restart the application
� allocate new (unmarked) blocks using free list

12/05/2007 14

Evaluation of mark/sweep

+ collects cyclic
structures

+ simple to implement

+ no overhead during
program execution

- “embarrassing
pause” problem

12/05/2007 15

Copying collection

Divide heap into two equal-sized semi-spaces:
� application allocates in from-space

� to-space is empty

When from-space fills, stop application:
� visit blocks in from-space referenced by roots

� copy block to to-space, (redirect pointer to copy)

� when done:

� reset from-space to be empty

� flip: swap roles of to-space and from-space

Restart application

12/05/2007 16

Evaluation of copying

+ collects cyclic structures

+ only visits reachable blocks,
ignores unreachable blocks

- “embarrassing
pause” problem
remains

