
1

CSE 413: Intro to C
Laura Effinger-Dean
10/12/07
(slides mostly copied from Dan Grossman)

Welcome to C
Compared to Java:

� low-level

� unsafe

� not object-oriented

� standard library is much smaller

Welcome to C
Compared to Java:

� similar programming style (if statements, for
loops, …)

� syntactic similarities (types, variables,
parameters, …)

C has different view of the world; more

for you to keep track of

Running process – low-level view
� One address space

� huge array of bytes

� usually 232 bytes, but not guaranteed

� that’s more memory than you really have

� “address” = position in array

� All code and data for program is in the array
� program knows the difference

� can also read/write files, print, take input, etc.

Address space layout
The following varies between systems, but is a good

approximation:

� code instructions

� global variables
� heap for other data (like Java’s new)

� unused portions – access causes “segfault”

� call stack for local variables and code addresses

…heap → ← stackglobalscode

The stack
� One activation record for each function (think

method) call that has not yet returned

� Activation record holds:
� local variables

� return address – position of code to execute when
method returns

� Also: function parameters

2

What could go wrong?
� C may exhibit weird behavior… like what?

� Trying to access arr[13] when arr is an array
with only 5 elements

� Try to read an int as if it were a double

� overwriting the return address

� Correct programs won’t do this, but buggy
programs may behave unpredictably

� But no array-bounds checks, type checks, etc.

Hello World
#include <stdio.h>

int main(int argc, char**argv) {

fputs("Hello, World!\n",stdout);

return 0;

}

� Compile with: gcc –o hello hello.c

� Run with: ./hello
� Runs main with command-line args; program exits when

main returns

� A lot going on even in this short program!

Hello World
#include <stdio.h>

int main(int argc, char** argv) {

fputs("Hello, World!\n",stdout);

return 0;

}

� #include copies file stdio.h into hello.c
� stdio.h defines fputs and stdout

� declaration of main function (very similar to Java methods):
� return type int

� takes 2 parameters (more on char** in a moment)

� not part of a class, no “implicit parameter”this

� main is a special function; all executable programs have one

Pointers
� an index into the address space array
� If x is a pointer, *x is the value it points to

� or x[0]

� If a is an array with 2 elements, the second
element is a[1] , or *(a+1)

� “arrays are pointers in C” – not quite, but
useful to think of them as the same

Pointers
� Type syntax: t* is a pointer to type t

� e.g.: int * , char **

� may be NULL, i.e. 0

� Array of type t* points to zero or more
elements of type t
� how many elements? no arr.length – must

keep track somehow

Pointers
� int ** : pointer to (zero or more) pointer(s)

to (zero or more) int(s)
� So argv is a pointer to j pointers to (one or

more) char(s), where j is held in argc

� common idiom: pass array length with array

� one or more because the strings are NULL-
terminated: the last character is always ‘\0’

� common idiom for arrays of characters

3

Back to Hello World
#include <stdio.h>

int main(int argc, char** argv) {

fputs("Hello, World!\n",stdout);

return 0;

}

� fputs is a function that takes a NULL-terminated string and
a FILE* (FILE is a type defined in stdio.h)

� “Hello, World\n” is a global variable – a char array
with ??? elements

� stdout is a global variable of type FILE* - defined in a
library

