
CSE 413 Winter 2002 Final Exam Sample Solution

Page 1 of 11

Question 1. (6 points, 3 points each) Regular expressions.

(a) Describe the set of strings generated by the regular expression

(a|b)(a|b)c(x|y)+

Strings beginning with 2 a’s, 2 b’s, or one of each followed by one c followed by one or more
x’s and y’s.

(b) Describe the set of strings generated by the regular expression

p*qp*qp*

Strings of p’s and q’s containing exactly 2 q’s.

Question 2. (5 points) In C, integer constants may be written as decimal numbers (normal case),
octal (base-8) numbers, or hexadecimal (base-16) numbers. The exact rules are as follows (from
Kernighan & Ritchie, The C Programming Language):

“An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0
(digit 0), decimal otherwise. Octal constants do not contain the digits 8 or 9. A sequence of
digits preceded by 0x or 0X (digit 0) is taken to be a hexadecimal integer. The hexadecimal
digits include a or A through f or F with values 10 through 15.”

Examples: 1579 0177 0x1a9FE 1000 01000 0X1000, but not 0789, 12af.

Write a regular expression or collection of regular expressions that generate integer constants as
described above.

There are many, many solutions; here’s one:

octdigit ::= [0-7]
decdigit ::= [0-9]
posdigit ::= [1-9]
hexdigit ::= [0-9a-fA-F]
intconstant ::= 0 octdigit* | posdigit decdigit* | 0 (x|X) hexdigit+

CSE 413 Winter 2002 Final Exam Sample Solution

Page 2 of 11

Question 3. (15 points) Here is a context free grammar for a fragment of English.

sentence ::= subject verb object .
subject ::= noun-phrase
object ::= modifier noun-phrase | noun-phrase
noun-phrase ::= article noun | article adjective noun

| adjective noun | noun
modifier ::= like | as
article ::= a | an | the
adjective ::= fruit | pretty | yellow
noun ::= flies | arrow | banana | time | fruit
verb ::= like | runs | flies

(a) (5 points) List the terminal, non-terminal, and start symbols for this grammar.

Terminals: . like as a an the fruit pretty yellow flies arrow banana time runs flies

Non-terminals: sentence subject verb object noun-phrase modifier article adjective noun

[Italic font not required to receive full credit.]

Start symbol: sentence

(b) (5 points) Draw a parse tree for the sentence “fruit flies like a banana” (“fruit flies” is the
subject; “like” is the verb).

[The production for sentence includes a period at the end, but the sample sentence doesn’t.
Answers received full credit whether or not they included the period.]

sentence

subject verb object

noun-phrase

adjective noun

fruit flies like

noun-phrase

article noun

a banana

(continued next page)

CSE 413 Winter 2002 Final Exam Sample Solution

Page 3 of 11

Question 3 (cont.)

[grammar repeated to save page flipping]

sentence ::= subject verb object .
subject ::= noun-phrase
object ::= modifier noun-phrase | noun-phrase
noun-phrase ::= article noun | article adjective noun

| adjective noun | noun
modifier ::= like | as
article ::= a | an | the
adjective ::= fruit | pretty | yellow
noun ::= flies | arrow | banana | time | fruit
verb ::= like | runs | flies

(c) (5 points) Show that this grammar is ambiguous.

The easiest way to do this is to show two distinct parse trees for the same sentence. Here is
a second parse tree for the sentence in part (a).

sentence

subject verb object

noun-phrase

noun

fruit flies

noun-phrase

article noun

a bananalike

modifier

CSE 413 Winter 2002 Final Exam Sample Solution

Page 4 of 11

Question 4. (12 points) Not really Scheme hacking.

Scheme has a very simple expression syntax. This question gives an informal description of a
subset of the legal expressions in Scheme; your job is to write a context free grammar that
generates these expressions.

For this problem, an expression is either an atomic expression, a function application, or a special
form. Atomic expressions are either integer constants (0, 17, 42), or symbols (car, cdr, cons,
+, *, 100bottles-of-beer-on-the-wall, etc.), or the empty list (). A function application
is a non-empty list of expressions: (e0), (e0 e1 … en), etc. The two special forms you
should include are (if e0 e1 e2) and lambda (for this question a lambda expression consists
of the word lambda followed by a parenthesized argument list – possibly empty – followed by a
single expression).

Give a context free grammar that generates these expressions. For full credit, your grammar must
generate only these expressions (i.e., the regular expression [a-zA-Z0-9+*()]* does generate
these Scheme expressions, but it includes many things that are not legal expressions). However,
you do not need to worry about whether a syntactically legal expression is semantically legal: the
expression (1 2) is syntactically legal, even though it is not a proper function application.

Your grammar should not be ambiguous (this isn’t hard – almost any reasonable solution to the
problem will be unambiguous). The grammar should contain non-terminals for major constructs
like expressions and applications, which would make it relatively easy to construct a recursive
descent parser if we wanted (not requested in this question).

You should assume that the non-terminal symbol generates all legal symbols and the non-terminal
int generates all legal integer constants, just as was done in the D grammar for identifiers and
integer constants. You do not need to define these two non-terminals further; just use them as
needed in your grammar.

expression ::= symbol | int | application | special-form | ()
application ::= (exps)
exps ::= expression | exps expression
special-form ::= (if expression expression expression)

| (lambda () expression) | (lambda (parms) expression)
parms ::= symbol | parms symbol

CSE 413 Winter 2002 Final Exam Sample Solution

Page 5 of 11

Question 5. (18 points) x86 hacking.

Consider the following D main program and function definition:

// return smallest power of 2 >= n. // test pwr function
// return 0 if n < 0 int main() {
int pwr(int n) { int in; int out;

int ans; in = get();
if (0 > n) { out = put(pwr(in));

return 0; return out;
} }
ans = 1;
while (n > ans)

ans = 2 * ans;
return ans;

}

(a) (6 points) Draw a picture showing the layouts of the stack frames for methods pwr and
main. This should show the stack layout immediately after the function prologue code has been
executed, but just before the first statement of the function body is executed. Be sure to show
where registers ebp and esp point, and the location and offsets from ebp of each parameter and
local variable.

return address

saved ebp

in

out

+4 main

<- ebp

-4

-8 <- esp

n

return address

saved ebp

ans

+8 pwr

+4

<- ebp

-4 <- esp

CSE 413 Winter 2002 Final Exam Sample Solution

Page 6 of 11

Question 5. (cont)

(b) (12 points) Translate both functions pwr and main into x86 assembly language. You do not
need to slavishly imitate the code generated by your compiler – straightforward x86 code is fine
as long as it uses the registers properly and obeys the x86 conventions used in the compiler
project for stack frame layout, function calls, etc. It will help us grade your answer if you include
the source code as comments near the corresponding x86 instructions. The D code is repeated
here to save some page flipping.

// return smallest power of 2 >= n. // test pwr function
// return 0 if n < 0 int main() {
int pwr (int n) { int in; int out;

int ans; in = get();
if (0 > n) { out = put(pwr(in));

return 0; return out;
} }
ans = 1;
while (n > ans)

ans = 2 * ans;
return ans;

}

pwr: push ebp ; prologue
mov ebp,esp
sub esp,4
mov eax,0 ; if (0 > n)
cmp eax,[ebp+8]
jle L1 ; jump false
mov esp,ebp ; return 0 (eax==0 already)
pop ebp
ret

L1: mov eax,1 ; ans = 1
mov [ebp-4],eax

L2: mov eax,[ebp+8] ; while (n > ans)
cmp eax,[ebp-4]
jle L3 ; jump n <= ans
mov eax,2 ; ans = 2*ans
imul eax,[ebp-4]
mov [ebp-4,eax]
jmp L2 ; repeat

L3: mov eax,[ebp-4] ; return ans
mov esp,ebp
pop ebp
ret

(code for main on next page)

CSE 413 Winter 2002 Final Exam Sample Solution

Page 7 of 11

Question 5 (b) cont.

d$main: ; (main: also received full credit)
push ebp ; function prologue
mov ebp,esp
sub esp,8
call get ; in = get()
mov [ebp-4],eax
mov eax,[ebp-4] ; pwr(in)
push eax
call pwr
add esp,4 ; result in eax for put
push eax ; call put
call put
add esp,4
mov [ebp-8] ,eax ; store function result in out
mov eax,[ebp-8] ; return out (redundant mov)
mov esp,ebp
pop ebp
ret

CSE 413 Winter 2002 Final Exam Sample Solution

Page 8 of 11

Question 6. (14 points) Compiler hacking.

The original FORTRAN language had an interesting conditional statement that tested the value of
an integer expression and executed one of three possible statements depending on whether the
expression was positive, zero, or negative. For this question, you should write a parser/code
generator method for a D compiler to add a similar statement to D.

The new rule in the grammar is:

statement ::= ifsign (exp) statement statement statement

Execution of this statement is carried out by first evaluating the integer expression exp. If the
value is negative, the first of the three statements is executed and the remaining two are skipped.
If the value is zero, the middle statement (only) is executed; if the value is positive, the third
statement is executed.

Example: The following code fragment would store –1, 0, or +1 in variable sign depending on
whether an input value is negative, zero, or positive respectively:

n = get();
ifsign (n)

sign = 0-1;
{ sign = 17; sign = sign-sign; }
sign = 1;

Complete the definition of method ifsignStmt on the next page to parse and generate code for
this new statement.

Hint: You may find it helps to organize your thoughts if you first sketch out the method needed
to parse this new construct, and separately think about the code that needs to be generated, before
you write your solution.

Reference information: You should assume that classes Token, CompilerIO, and Scanner are
available as described in the compiler project handouts.

// description of a single lexical token
class Token {

public int kind; // kind of token (see constants below)
public int val; // if kind = INT, this is the int
public String ident; // if kind = ID, this is the identifier

// lexical classes:
public static int ID = 0; // identifier
public static int INT = 1; // integer constant
public static int LPAREN = 2; // left parentheses
public static int RPAREN = 3; // right parentheses
public static int LBRACE = 4; // left curly brace
public static int RBRACE = 5; // right curly brace
... // etc.

}

CSE 413 Winter 2002 Final Exam Sample Solution

Page 9 of 11

Question 6. (cont)

// parser
class parser {

CompilerIO cio; // I/O interface (initialized elsewhere)
Scanner scan; // Scanner (initialized elsewhere)

Token tok; // next unprocessed source program token

// update tok by advancing to next token
void nextTok() { tok = scan.nextToken(); }

// write generated code string s to output file
void gen(String s) { cio.println(s); }

// return new unique assembly language label (without trailing ‘:’)
String newLabel() { ... }

// compile ifsign (exp) statement statement statement
void ifsignStmt() {

// write your answer below

String stmt2label = new String();
String stmt3label = new String();
String donelabel = new String();

// skip ifsign and left paren, compile exp, skip right paren
nextToken();
nextToken();
exp();
nextToken();

// compare exp to 0 and jump if 0 or positive
gen("cmp eax,0");
gen("jz " + stmt2label);
gen("jg " + stmt3label);

// statement 1
stmt();
gen("jmp " + donelabel);

// statement 2
gen(stmt2label + ":");
stmt();
gen("jmp " + donelabel);

// statement 3 + final label
gen(stmt3label + ":");
stmt();
gen(donelabel + ":");

}
}

CSE 413 Winter 2002 Final Exam Sample Solution

Page 10 of 11

Question 7. (7 points) Memory management – the question that was left off the midterm(!)

(a) (4 points) Reference counting is a simple algorithm for automatically managing dynamically
allocated memory. Each allocated block of storage contains a count of the number of references
(pointers) to that block, which is updated as references change. If the count is ever decreased to
0, that block of storage is unused and can be automatically reclaimed.

Although it is simple to understand, reference counting is not used in practice to manage storage
for functional and object-oriented languages like Scheme and Java. Give two distinct technical
reasons why it is not the best choice for managing storage in these languages.

• Performance: updating reference counts adds significant overhead to simple pointer
manipulation, which is a frequent operation in functional and object-oriented
languages.

• Circular references: If a data structure contains a cycle, the reference counts for the
items in the cycle will be positive, even if the data structure is no longer being used.
Such data structures must be collected by some other algorithm besides simple
reference counting.

(b) (3 points) In class we looked at two simple garbage collection algorithms: the classic mark-
sweep collector, and a copying collector. Although it is harder to implement, a copying collector
has some technical advantages over mark-sweep. Describe one of them.

The big advantage is that all active cells are moved together into a compacted region. This
reduces the size of the active data area being used by the computation, which is particularly
useful in systems employing virtual memory.

CSE 413 Winter 2002 Final Exam Sample Solution

Page 11 of 11

Question 8. (3 points, 1 point each) Java and .NET implementation strategies.

(a) True or false: A compiled Java .class file specifies the actual memory layout of objects
(instances) of that class.

false

(b) The .NET compilers generate output files containing Microsoft Intermediate Language
(MSIL). How is the MSIL code actually executed? (circle)

1. The MSIL code is interpreted during execution, as was true in the original Java virtual
machines.

2. The MSIL code is interpreted at first, but when the interpreter detects that a segment of
interpreted code is being executed repeatedly (a loop body, for example), a Just-In-Time
(JIT) compiler translates it to native code, which is then executed.

3. The MSIL is translated to native code before anything is executed, and that translated
code is what actually runs.

3

(c) In the .NET framework, managed code refers to safe code that, among other things, can be
garbage collected automatically. The C++ compiler for .NET includes the full C++ language,
including both managed and unmanaged language constructs. Is the C++ & operator (compute the
address of a variable, as in &x) in the managed or unmanaged part of C++.NET?

unmanaged

