
 1

CSE 413 Final Exam

11 December 2007

Name ___ Student ID __________

You should assume that all input data is as specified and is free of errors unless specified
otherwise. You may also assume that all calls to library functions (e.g., malloc, free,
etc.) succeed. You do not need to include code to handle errors unless specifically instructed
to do so.

Answer all questions; show your work. You may use:

1. Printout of: x86 overview.
2. Printout of: Code generation for D.
3. One 8.5 * 11” piece of paper with handwritten notes

Other items, including laptop computers, calculators, cell phones, and other communications
devices, are not allowed.

Advice You have 1 hour and 50 minutes, do the easy questions first, and work quickly!

Total: 100 points.

Question Max Points Score

1 17
2 12
3 10
4 10
5 18
6 18
7 15

Total 100

 2

1. [17 pts.] Consider the following C program (which compiles and runs without errors):
#include <stdio.h>

void snowy(int* a, int* b) {
 int c; c = 37;
 *a = *b;
 printf("In snowy, before rainy: *a=%d, *b=%d, c=%d\n", *a, *b, c);
 *b = rainy(&c);
 printf("In snowy, after rainy: *a=%d, *b=%d, c=%d\n", *a, *b, c);
 }

int rainy(int *x) {
 int b; b = 50;
 b = b + *x;
 x = &b;
 /* (a) draw picture at this point */
 printf("In rainy: *x=%d, b=%d\n", *x, b);
 return 4;
}

int main(){
 int p; int q;
 p = 75;
 q = 88;
 snowy(&p, &q);
 printf("In main: p=%d, q = %d\n", p, q);
 return 0;
}
(a) Draw a diagram with boxes for each active function showing the situation right when
execution reaches the comment in the function rainy. Be sure to show the values of all of
the variables in each active function. If a variable is a pointer to another variable, indicate its
value by drawing an arrow between the variable name and the storage location (variable) that
it points to. This is *not* meant to be a question about ebp, esp, stack offsets, etc. This
question is very similar to the one we had on the midterm. Draw a picture similar to that one.

(b) What output is produced when this program is executed? If an address is printed out,
please make up an address and label the appropriate box in your picture above with that
address. (Don’t worry about writing out the exact details of each message, but we should be
able to tell which values you are printing where.)

 3

2. [12] Regular expressions.

(a) Give an English description of the set of strings generated by the regular expression
b(a|b)+a. (Don’t just re-write the rules in English; give a description of the strings, like
“all strings of 17 a’s followed by 42 b’s”).

(b) Write a regular expression that generates all strings of 0’s and 1’s containing an odd
number of 1’s (a string must contain at least one 1).

(c) Write a regular expression that generates all strings containing a’s, b’s, and c’s with at
least one a and at least one b.

 4

3. [10] Consider the context free grammar

 S ::= S T x | x
 T ::= T y | y

(a) Give a top down leftmost derivation of the string: x y y x y x

 S →

(b) Draw a parse tree for the string x y y x y x (the same string as in part (a)).

 5

4. [10] Suppose we want to add the following conditional statement to D:

 ifequal (exp1, exp2)
 statement1
 smaller
 statement2
 larger
 statement3

The meaning of this is that statement1 is executed if the integer expressions exp1 and exp2
are equal; statement2 is executed if exp1 < exp2, and statement3 is executed if exp1 > exp2.
Note that ifequal, smaller, and larger are all keywords.

(a) (5 points) Give context-free grammar production(s) for the ifequal statement that
allows either or both of the “smaller” and “larger” parts of the statement to be omitted.
If both the “smaller” and “larger” parts of the statement appear, they should appear in
that order. You do not need to give productions for expressions and other types of
statements, just the ifequal statement (which should be considered a statement as well).
Write your grammar here:

statement ::=

(b) (5 points) Is the grammar with your production(s) from part (a) ambiguous? If not, argue
informally why not; if it is ambiguous, give an example that shows that it is.

 6

5. [18] x86 programming. Consider the following C function.

int foo(int x) {
 int temp;
 /* (a) Show the stack here */
 if (x == 100) {
 temp = x * 2;
 } else {
 temp = bar(x + 5);
 }
 return temp;
}

(a) Draw a picture of the stack frame for function foo showing the locations of the
parameters and local variables plus any other things normally contained in a function stack
frame. The picture should show the state of the stack frame at the point right before the first
statement in the function is executed (i.e., before any additional items have been pushed on
or popped from the stack). Be sure to show the locations referred to by registers ebp and
esp, and the numeric offsets of all parameters and local variables

(b) On the next page, translate this C function into x86 assembly language. Your code only
needs to be a correct x86 assembly language function – in particular, it does not need to
slavishly imitate the code generated by your compiler project. However you must use the
proper function prologue, epilogue, and calling conventions for x86 C code. You also must
include translations of all statements in the original code – you can’t optimize any of them
away.

You should assume that function bar, called from this function, has a single int argument
and returns an int value.

It would be helpful if you included some brief comments in your code to make it easier to
follow your solution, but these do not need to be extensive. (i.e., don’t waste a lot of time
writing here)

You may use either Intel/Microsoft or AT&T/Unix assembly language syntax. Indicate
which one on your answer.

 7

5. (cont.) Write your x86 version of this function below.

Syntax used (circle): Intel/Microsoft AT&T/Unix

int foo(int x) {
 int temp;
 if (x == 100) {
 temp = x * 2;
 } else {
 temp = bar(x + 5);
 }
 return temp;
}

 8

6. [18] Compiler hacking. We would like to extend the D language and compiler to handle a
new loop statement of the following form:

 repeat
 statement1
 until (bool-exp)

This is a loop that will always execute once with its test at the bottom. In detail, this new
statement executes as follows

1. Execute statement1.
2. Evaluate bool-exp. If bool-exp is true, the loop terminates and execution continues

after the loop.
3. If bool-exp is false, execution continues by jumping back to the repeat keyword,

and execution continues at step 1 with statement1.

On the next page, write an implementation of compiler function repeat_until_stmt
that, when called, will parse and generate code for this new kind of loop. You can assume
that this function is to be added to a D compiler constructed as described in the compiler
assignments. In particular, you should assume the following:

• There is a global variable current_token defined in the parser and accessible to
all of the functions in the parser. When a parser function is called, this variable
contains the first token in the construct that is to be parsed.

• Scanner function next_token() can be called at any time to advance
current_token to the next token in the source program.

• The token header file has new symbols TOK_REPEAT and TOK_UNTIL defined for
the new repeat and until keywords (if you need to refer to these).

• Functions statement(), exp(), and so forth are available in the parser to
compile each of the major non-terminals in the D grammar.

• A function new_label(char* lbl) is available. Each time it is called, it
replaces the contents of the string lbl with a new, unique string that can be used as a
label in the generated assembly language program.

• Function bool_exp(char* lbl) parses and compiles a bool-exp and generates
code that will evaluate the boolean expression and jump to lbl if the condition is
false.

• Finally, there is a function gen(...) that writes its argument as a new line in the
assembly language program. Treat this as a pseudo-code function whose argument
doesn’t need to be strictly legal C as long as the meaning is clear. For example, you
can write gen(jmp lbl); if you want to generate the instruction “jmp lbl” in
the program, where jmp is a literal opcode and lbl is a string variable. (i.e., do this
instead of writing detailed string handling code.)

• Use the correct AT&T/Unix syntax in the generated code

 9

6. (cont). Write your compiler function below.

 /* Parse and compile:
 * repeat statement until(bool-exp) */
 void repeat_until_stmt() {

 }

 10

2. [15] Short Answer/Fill in the blank/Multiple Choice:

a) _________________ Programming language designed by committee.
Introduced “call by name” semantics.

b) _________________ Programming language first developed by John Backus
at IBM in 1954. Still in use today.

c) It is easiest to write a recursive descent parser for a language that (pick one):
a) is LL(1), b) has left recursive rules, c) is ambiguous, d) is LR(1)

d) “Functional programming is programming without side effects”. In this context,
what do we mean by “side effects”?

e) Give 3 examples of things that a compiler might check during the type checking
phase (these should not just be the same thing written 3 different ways).

 11

Extra Credit:

• List one advantage that dynamic linking has over static linking.

• What is a weakness of mark sweep garbage collection: (circle one)
i. Doesn’t collect circular structures

ii. Big pauses while marking and sweeping
iii. Extra overhead on every pointer access
iv. All of the above
v. None of the above

vi. i and ii.

• When implementing Object oriented languages using vtables (as described in lecture),
how are overridden functions handled? (circle one)

i. Generate code to search multiple vtables until the function is found
ii. Wait until runtime to determine which offset to use in a vtable

iii. Generate code to call the function at a pre-determined offset in a vtable
iv. All of the above
v. None of the above

vi. i and ii.

