
CSE 413 Winter 2001 Final Exam

Page 1 of 10

Name ________________________________ ID # ____________ Score __________

_____ _____ _____ _____ _____ _____ _____
1 2 3 4 5 6 7

There are 7 questions worth a total of 90 points. Please budget your time so you get to all of the
questions. Keep your answers brief and to the point.

You may refer to the textbook (Budd’s Understanding Object-Oriented Programming using
Java) and clean copies of the course handouts only. No other books or notes are allowed.

Please wait to turn the page until you are told to begin.

CSE 413 Winter 2001 Final Exam

Page 2 of 10

Question 1. (12 points, 4 each) Regular expressions.

(a) Describe the set of strings generated by the regular expression

((xy*x) | (yx*y))*

(b) Write a regular expression that generates all non-empty strings of a’s, b’s, and c’s where the
first c (if any) appears after the first a (if there are any a’s in the string).

(c) Write a regular expression that generates all non-empty strings of a’s and b’s that don’t
contain the contiguous substring baa.

CSE 413 Winter 2001 Final Exam

Page 3 of 10

Question 2. (12 points) Context-free grammars

Consider the following grammar.

S ::= SA | Ba
A ::= Ab | B
B ::= aA | c

(a) (3 points) List the terminal, nonterminal, and start symbols for this grammar.

Terminals:

Non-terminals:

Start symbol:

(b) (6 points) Draw the parse tree for the sentence acac.

(c) (3 points) Give a leftmost derivation of the sentence acac.

CSE 413 Winter 2001 Final Exam

Page 4 of 10

Question 3. (8 points) Stack machine hacking.

The Java virtual machine (JVM) defines an instruction set for a stack machine, and it is
instructions for this machine that are contained in Java .class files. This question is about generic
stack machines, as discussed in class.

Recall that most of the operations in a stack machine take their operands off the top of the
expression stack and push the result onto the stack in their place. Typical operations are:

pushval offset push contents of variable at given offset in the stack frame
pushaddr offset push memory address of variable with given stack frame offset
pushconst val push constant integer val onto stack
assign store top of stack value at location whose address is underneath it on

the stack; pop both
pop pop unneeded value from stack
dup push duplicate copy of value currently on top of the stack
swap interchange top two values on the stack
add addition
mul multiplication

Suppose we’re generating code in a method with the following symbol table.

Variable Offset
p 12

q 4
z 8

Write the stack machine code corresponding to the following statements. For full credit, the
operands of expressions should be pushed from left to right (i.e., push the 12 first when
evaluating the last expression).

q = 17;
p = 42;
z = 12 * ((p*q) + 4*q+ p);

CSE 413 Winter 2001 Final Exam

Page 5 of 10

Question 4. (14 points) Java hacking.

Write a complete Java program that makes a copy of a text file. The file name should be given on
the command line (or equivalent, depending on your development environment), and can be
accessed as the first element of the String array parameter of method main. The copy of the
file should be named copy of originalfilename, where originalfilename is the file name taken
from the command line.

For full credit, you must copy the file a line at a time (readLine), not character by character,
and you should use the appropriate reader and writer classes.

CSE 413 Winter 2001 Final Exam

Page 6 of 10

Question 5. (10 points) Language hacking (context-free grammars again).

One of your colleagues proposes to extend D by adding logical and (&&) to the grammar as
follows:

bool-exp ::= rel-exp | ! (rel-exp) | bool-exp && bool-exp

(a) (6 points) Show that this extension makes the grammar ambiguous.

(b) (4 points) Fix the grammar so it contains logical and, but is not ambiguous.

CSE 413 Winter 2001 Final Exam

Page 7 of 10

Question 6. (20 points) x86 hacking.

Here is yet another version of factorial written in D.

int fact(int n) { return factaux(1,2,n); }

int factaux(int result, int next, int n) {
int answer;
if (next > n)

answer = result;
else

answer = factaux(result*next, next+1, n);
return answer;

}

The goal of this problem is to write an x86 assembly language version of function factaux
only. Use the standard Win32 conventions for function calls, except push the function arguments
from left to right, as you did in your D compiler.

(a) (6 points) Draw a picture showing the local stack frame layout during execution of function
factaux. This is the layout after the function prologue code has been executed, just before
execution of the if statement. Be sure to show where registers ebp and esp point in the stack
frame, the location of each parameter and local variable, and their numeric offsets from ebp.

CSE 413 Winter 2001 Final Exam

Page 8 of 10

Question 6 (cont).

(b) (14 points) Translate factaux to x86 assembly language. You don’t have to imitate your
compiler precisely and generate really bad code; straightforward x86 code is fine, as long as it
uses the registers properly and obeys the x86 conventions used by the D compiler for stack
layout, function calls, etc. Also, don’t omit any statements – be sure to actually store a value in
variable answer, for instance. It will help us read your answer if you include the source code as
comments near the corresponding x86 code. The D code is repeated here for reference.

int factaux(int result; int next; int n) {
int answer;
if (next > n)

answer = result;
else

answer = factaux(result*next, next+1, n);
return answer;

}

CSE 413 Winter 2001 Final Exam

Page 9 of 10

Question 7. (14 points) Compiler hacking.

C, C++, and Java all contain a conditional expression that has the syntax

condition ? expression1 : expression2

This is very much like the if expression in Scheme. The Boolean expression condition is
evaluated. If it is true, then expression1 is evaluated and its value is the value of the entire
conditional expression. If condition evaluates to false, then expression2 is evaluated and its value
is the value of the conditional expression. Only one of expression1 and expression2 is evaluated;
the other is not evaluated.

Example: This statement compares the values in x and y and stores the larger value in max.

max = x > y ? x : y;

For this problem, we will add a rule to the D grammar for conditional expressions, and your job is
to write a method to compile it. The new grammar rule is

conditional-exp ::= bool-exp ? exp : exp

Complete the definition of method conditionalExp in the parser class on the next page so it
compiles conditional-exps. The parser class contains an instance variable that holds the next
unprocessed token from the input program, and a function that calls the scanner to read the next
token. Use these to access the tokens from the source program - don't call the scanner directly. It
also contains a method to write generated code to the output file. Use this to generate code; don’t
use writeln directly. The parameter to function boolExp is the label to which control should
be transferred in the condition evaluates to false. Finally, function newLabel is available to
create unique strings that can be used as labels in the generated code as needed.

Hint: You may find it helpful to sketch out the parsing and code generation separately before you
write your solution.

Reference information: You should assume that classes representing tokens, EchoIO, and the
scanner are available for your use, as described in the compiler project handouts.

// description of a single lexical token
class Token {
public int kind; // kind of token (see constants below)
public int val; // if kind=INT, then val=value of the integer

// lexical classes:
public static int INT = 0; // integer constant
public static int QUESTION = 1; // ? symbol
public static int COLON = 2; // : symbol
... // ... etc. ...

public static int EOF = 99; // end of input
// (returned by scanner
// when no more tokens

} // are available)

CSE 413 Winter 2001 Final Exam

Page 10 of 10

// parser
class Parser {

EchoIO eio; // I/O interface [initialized elsewhere]
Scanner scan; // Scanner [initialized elsewhere]
...
Token tok; // next unprocessed token from source program

// update tok by advancing to the next token in the source program
void nextTok() { tok = scan.nextToken(); }

// write generated code s to output
void gen(String s) { eio.println(s); }

// return unique string that can be used as an assembly lang. label
String newLabel() { ... }

// compile bool-exp and generate a conditional jump to falseTarget
// if the bool-exp evaluates to false
void boolExp(String falseTarget) { ... }

// compile bool-exp ? exp : exp
void conditionalExp() {

}

