CSE 413 Midterm Exam

November 3, 2008

Name

The exam is closed book, except that you may have the Scheme language definition and a single page of
hand-written notes for reference.

Style and indenting matter, within limits. We’re not overly picky about details like an extra or a missing
parenthesis, but we do need to be able to follow your code and understand it.

If you have questions during the exam, raise your hand and someone will come to you. Don’t leave your
seat.

Please wait to turn the page until everyone has their exam and you have been told to begin.

Advice: The solutions to many of the problems are quite short. Don’t be alarmed if there is a lot more
room on the page than you actually need for your answer.

More gratuitous advice: Be sure to get to all the questions. If you find you are spending a lot of time on
a question, move on and try other ones, then come back to the question that was taking the time.

1 /15
2 /12
3 /17
4 /17
5 /17
6 /17
7 /5
Total / 100

CSE 413 Midterm, November 3, 2008 Page 1 of 9



Question 1. (15 points) For each of the following, what value is printed?

(a) (define x 10)
(define y 5)
(let ((x 3)
Gy (+ x 1))
¢+ xy))

(b) (map odd? *(2 17 5 6))

() (map car “(((1 2) 3) (4 5 (I

CSE 413 Midterm, November 3, 2008 Page 2 of 9



Question 2. (12 points) Suppose we enter the following function definitions at the top level of a
Scheme interpreter.

(define gadget
(lambda (9)
(lambda (%)

@ (@ )

;; return n squared
(define square (lambda (n) (* n n)))

(a) What value do we get if we evaluate the following?

((gadget square) 2)

(b) Describe the result returned by evaluating (gadget f00). What value is returned when function
gadget is applied to its argument? (This question is about the value of (gadget To00), independent
of how that value is later used.) If the value returned is a function closure, be sure you describe the
function as well as the environment bindings (which names are bound to what) in the closure. Keep
your answer brief, if possible.

CSE 413 Midterm, November 3, 2008 Page 3 of 9



Question 3. (17 points) Suppose we have the following definitions in a Scheme program

(define Istl “(a b ¢))
(define Ist2 “((X y) 2))
(define p (cons Istl Ist2))
(define q (append Istl Ist2))

(a) Draw a diagram showing the result of evaluating these definitions as a single group (i.e., Ist1 and
I1st2 should appear once, and p and q should reference these values as needed —don’t draw Istl
and Ist2 a second time). Istl is drawn for you.

Istl e—»

O 0
o g ]
O <o

(b) What are the values of p and g when these are printed by Scheme?

q

CSE 413 Midterm, November 3, 2008 Page 4 of 9



Question 4. (17 points) For this problem, write a Scheme function (merge Istl Ist2) that hasas
input two lists of integers sorted in ascending order and produces a single sorted list containing all of the
numbers from the input lists. For example, evaluation of

(merge (-7 1 5 12 19 413) (2 3 10 12 15))
should produce

(-7 123510 12 12 15 19 413)

You should assume that the arguments are proper lists containing integers only, and that the values are
correctly sorted.

CSE 413 Midterm, November 3, 2008 Page 5 of 9



Question 5. (17 points) Write a tail-recursive Scheme function (power X n) that computes the value
X", i.e., X multiplied by itself n times. You should assume that the exponent n is a non-negative integer
value and, as usual, if nis 0, then (power X n) should evaluate to 1.

For full credit,
e Your implementation must be properly tail-recursive, and

e You may not define any additional functions or variables at top-level (i.e., define). You are, of
course, free to create any additional functions or variables you wish nested inside the scope of
power, and

e You should calculate the result directly with appropriate arithmetic operations; you may not use
the Scheme library function expt or anything similar.

CSE 413 Midterm, November 3, 2008 Page 6 of 9



Question 6. (17 points) One of the advantages of an interpreter is that it is easy to add and change
language features. For this question we would like to extend MUPL to add a new kind of conditional
expression, in addition to the “ifgreater” one that is already included in the language.

(DON’T PANIC!!! The answer is considerably shorter than the question!)
Here is the specification for the new MUPL i T expression:

o Ifey, e, and es are MUPL expressions, then (make-m-if e; e, e3) isa MUPL expression: a
conditional evaluating to e, if e; is “true”, otherwise to e;. The expression e, is considered to be
“false” if it is the MUPL unit value (make-m-unit). Any other MUPL expression of any type is
considered to be “true”.

On the next page, write the code to add this new expression to the MUPL eval -prog function. Your
implementation should evaluate the condition e, only once, and should evaluate either e, or es, but not
both, depending on the value of e;.

You should assume that the following structure has been added to MUPL to represent these conditional
expressions:

(define-struct m-if (el e2 e3)) ;; If el is anything other than
;s m-unit then e2 else e3

For reference, here are the other structures defined in the original MUPL code (most of which you
probably won’t need):

(define-struct var (string)) a variable, e.g., (make-var "foo™)
(define-struct iInt (num)) a number, e.g., (make-int 17)
(define-struct add (el e2)) ;; add two expressions
(define-struct ifgreater (el e2 e3 e4));;if el > e2 then e3 else e4
(define-struct fun (nameopt formal body))

;> a recursive(?) l-argument function

(define-struct app (funexp actual)) ;; function application
(define-struct m-pair (el e2)) ;; make a new pair
(define-struct fst (e)) ;> get First part of a pair
(define-struct snd (e)) ;> get second part of a pair
(define-struct m-unit ()) ;> unit

(define-struct is-m-unit (e)) ;; evaluate to 1 if e is unit else 0

(define-struct closure (env fun))

Write your code on the next page...

(You can also tear this page out of the exam if it saves you time by avoiding page flipping.)

CSE 413 Midterm, November 3, 2008 Page 7 of 9



Question 6. (cont.) Write your code to implement the new MUPL conditional expression in the space
provided.

(define-struct m-if (el e2 e3)) ;; new conditional expression

(define (eval-prog p)

(letrec
((f (lambda (env p)
(cond (--.-
((m-1Ff? p) ;; write your code for m-if below
(
)
)

CSE 413 Midterm, November 3, 2008 Page 8 of 9



Question 7. (5 points) In class we surveyed some of the concepts behind garbage collection. Most
modern garbage collectors are generational garbage collectors. What is the main idea behind this kind
of collector and why is it effective? Keep your answer brief — it should only take a couple of sentences.

CSE 413 Midterm, November 3, 2008 Page 9 of 9



