CSE 413: Programming Languages
and their Implementation

Hal Perkins
Spring 2011

CSE 413 Sp11 - Introduction



Today’s Outline

o Administrative Info
e QOverview of the Course
e |Introduction to Scheme

CSE 413 Sp11 - Introduction



Registration

 Please sign up on info sheet being passed
around 1f you’re still trying to get in

 We’ll see what we can do, but no promises
(also depends on how many requests there are)

CSE 413 Sp11 - Introduction



Who, Where & \When

e |nstructor
» Hal Perkins (perkins@cs.washington.edu)

« Teaching Assistants

» Nathan Armstrong, Liem Dinh,
Jiayun (Gloria) Guo, Chanel Huang

Office hours & locations tba, etc.

e |ectures
» MWEF 2:30-3:20, BAG 261

CSE 413 Sp11 - Introduction



Web Page

« All info i1s on the CSE 413 web:

http://www.cs.washington.edu/education/courses/413/11sp

 Look there for schedules, contact information,
assignments, links to discussion boards and
mailing lists, etc.

CSE 413 Sp11 - Introduction



CSE 413 E-mail List

* |f you are registered for the course you will be
automatically added.

« E-mail list is used for posting important
announcements by instructor and TAS

 You are responsible for anything sent here
» Mail to this list Is sent to your UW email address

CSE 413 Sp11 - Introduction



CSE 413 Discussion Board

« Use the Catalyst GoPost message board to stay
In touch outside of class

» Staff will watch and contribute too

e Use:
» General discussion of class contents

» Hints and ideas about assignments (but not
detailed code or solutions)

» Other topics related to the course

CSE 413 Sp11 - Introduction 7



Course Computing

» College of Arts & Sciences Instructional
Computing Lab
(aka Math Science Computing Labs)

« Or work from home — all software is freely
available
» See links on the course web

CSE 413 Sp11 - Introduction



Grading: Estimated Breakdown

« Approximate Grading:

» Homework + Project: 55%

v

» Midterm: 15% (TBA, est. 5/6 in class)
» Final: 25% (Tue. June 7, 2:30-4:20)
» Participation 5%

« Assignments:

» Weights may differ to account for relative difficulty of
assignments

» Assignments will be a mix of shorter written exercises
and longer programming projects

CSE 413 Sp11 - Introduction



Deadlines & Late Policy

 Assignments generally due Thursday evenings
via the web

» EXxact times and dates given for each assignment

 Late policy: 4 late days per person
» At most 2 on any single assignment
» Used only in integer units

» For group projects, both students must have late
days available and both are charged if used

» Don’t burn them up early!!

CSE 413 Sp11 - Introduction 10



Academic (Mis-)Conduct

* You are expected to do your own work
» EXxceptions (group work), if any, will be clearly announced

 Things that are academic mis-conduct:

» Sharing solutions, doing work for or accepting work from
others

» Searching for solutions on the web

» Consulting solutions to assignments or projects from
previous offerings of this course

* Integrity Is a fundamental principle in the academic
world (and elsewhere) — we and your classmates trust
you; don’t abuse that trust

CSE 413 Sp11 - Introduction 11



Homework for Today!!

1) Information Sheet (aka Assignment #0):
Bring to lecture on Friday April 1

2) Download and Install DrRacket

» (and play with it!)
3) Reading: See “Scheme Resources” on Web page
4) Assignment #1: (coming soon!)

CSE 413 Sp11 - Introduction 12



Reading

* No required text — we’ll make some suggestions as we go along
« Other references available from course web page

e Check “Functional Programming & Scheme” Link for:
» Notes on Scheme
» Revised® Report on the Algorithmic Language Scheme (R5RS)
« The language definition: this is your friend!

» Link to Structure and Interpretation of Computer Programs (Abelson,
Sussman, & Sussman)
« Detailed textbook from MIT — overkill for us, but fantastic!

CSE 413 Sp11 - Introduction 13



Tentative Course Schedule

Week 1: Scheme
Week 2: Scheme
Week 3: Scheme
Week 4: Scheme wrapup/intro to Ruby

Weeks 5-6: Object-oriented programming and Ruby; scripting
languages

Weeks 7-9: Language implementation, compilers and
Interpreters

Week 10: garbage collection; special topics

CSE 413 Sp11 - Introduction 14



Now where were we?

* Programming Languages
* Their Implementation

CSE 413 Sp11 - Introduction

15



Why Scheme?

* Focus on “functional programming” because
of simplicity, power

o Stretch our brains — different ways of thinking
about programming and computation
» Often a good way to think if stuck in C/Java/...
 Let go of Java/C/... for now

» Easier to approach functional programming on its
own terms

» We’ll make the connections back to what you’ve
seen before later in the quarter

CSE 413 Sp11 - Introduction

16



Functional Programming

Programming consists of defining and evaluating
functions

No side effects (assignment)

» An expression will always yield the same value when
evaluated (referential transparency)

No loops (use recursion instead)

Scheme includes assignment and loops but they
are not needed except in specific circumstances
and we will avoid them

CSE 413 Sp11 - Introduction 17



Primitive Expressions

e constants
Integer :
rational :
» real :
boolean :

e variable names (symbols)

» Names can contain almost any character except
white space and parentheses

>

v

>

v

>

v

» Stick with simple names like vaiue, x, iter, ...

CSE 413 Sp11 - Introduction

18



Compound Expressions

 Either a combination or a special form

1. Combination : (operator operand operand ...)
» there are quite a few pre-defined operators

» We can define our own operators

2. Speclal form
» keywords in the language
» eg, define, If, cond

CSE 413 Sp11 - Introduction

19



Combinations

(operator operand operand ...)

this iIs prefix notation, the operator comes first
a combination always denotes a procedure application

the operator is a symbol or an expression, the applied
procedure Is the associated value
» +, -, abs, my-function

» characters like * and + are not special; if they do not stand
alone then they are part of some name

CSE 413 Sp11 - Introduction 20



Evaluating Combinations

« To evaluate a combination
» Evaluate the subexpressions of the combination

» Apply the procedure that is the value of the leftmost
subexpression (the operator) to the arguments that are
the values of the other subexpresions (the operands)

« Examples (demo)

CSE 413 Sp11 - Introduction 21



Evaluating Special Forms

 Special forms have unique evaluation rules
- (define x 3) IS an example of a special
form; It is not a combination

» the evaluation rule for a simple define is "associate
the given name with the given value"

» There are a few more special forms, but there
are surprisingly few of them compared to other
languages

CSE 413 Sp11 - Introduction 22



Procedures

CSE 413 Sp11 - Introduction

23



Recall the define special form

 Special forms have unique evaluation rules

- (define x 3) IS an example of a special
form; it I1s not a combination

» the evaluation rule for a simple define is "associate
the given name with the given value"

CSE 413 Sp11 - Introduction 24



Define and name a variable

 (define (name) (expr))
» define - special form
» name - name that the value of expr is bound to

» expr - expression that is evaluated to give the
value for name

- define IS valid only at the top level of a
<program> and at the beginning of a <body>

CSE 413 Sp11 - Introduction

25



Define and name a procedure

 (define ({name) {formal params)) {body))
» define - special form
» name - the name that the procedure is bound to

» formal params - names used within the body of
procedure

» body - expression (or sequence of expressions)
that will be evaluated when the procedure is
called.

» The result of the last expression in the body will
be returned as the result of the procedure call

CSE 413 Sp11 - Introduction 26



Example definitions

(define pi 3.1415926535)

(define (area-of-disk r)
(* pP1 (* r r)))

(define (area-of-ring outer inner)

(- (area-of-disk outer)

(area-of-disk inner)))

CSE 413 Sp11 - Introduction

27



Defined procedures are "first class"

« Compound procedures that we define are used
exactly the same way the primitive procedures
provided in Scheme are used

» names of built-in procedures are not treated
specially; they are simply names that have been
pre-defined

» you can't tell whether a name stands for a
primitive (built-in) procedure or a compound
(defined) procedure by looking at the name or how
It Is used

CSE 413 Sp11 - Introduction 28



Booleans

 Recall that one type of data object is boolean
» #t (true) or #£ (false)
« We can use these explicitly or by calculating
them in expressions that yield boolean values
» An expression that yields a true or false value
IS called a predicate
» #t =>
» (< 5 5) =>
» (> pi 0) =>

CSE 413 Sp11 - Introduction

29



Conditional expressions

 As in all languages, we need to be able to
make decisions based on inputs and do
something depending on the result

CSE 413 Sp11 - Introduction

30



Special form: cond

« (cond (clause,) (clause,) ... (clause,))

 each clause is of the form
» ({predicate) (expression))

 the last clause can be of the form
» (else (expression))

CSE 413 Sp11 - Introduction

31



Example: sign.scm

; return the sign of x as -1, 0, or

(define (sign x)

(cond
((< x 0) -1)
((=x 0) 0)

((>x 0) +1)))

CSE 413 Sp11 - Introduction



Special form: i £

« (if (predicate) (consequent) (alternate))

« (if (predicate) (consequent) )

CSE 413 Sp11 - Introduction

33



Examples : abs.scm

; absolute wvalue function
(define (abs a)

CSE 413 Sp11 - Introduction

34



Logical composition

* (and (e} (ey... (ey))
* (or (e) (ey... )
* (not (¢))

« Scheme interprets the expressions €; one at a time in
left-to-right order until it determines the correct value

CSE 413 Sp11 - Introduction 35



In-range.scm

; true 1f wval is lo <= val <= hi
(define (in-range lo wval hi)

(and (<= lo wval)
(<= val hi)))

CSE 413 Sp11 - Introduction

36



