
CSE 413 Sp11 - Introduction

1

CSE 413: Programming Languages

and their Implementation

Hal Perkins

Spring 2011

CSE 413 Sp11 - Introduction

2

Today’s Outline

• Administrative Info

• Overview of the Course

• Introduction to Scheme

Registration

• Please sign up on info sheet being passed

around if you’re still trying to get in

• We’ll see what we can do, but no promises

(also depends on how many requests there are)

CSE 413 Sp11 - Introduction

3

CSE 413 Sp11 - Introduction

4

Who, Where & When

• Instructor

» Hal Perkins (perkins@cs.washington.edu)

• Teaching Assistants

» Nathan Armstrong, Liem Dinh,
Jiayun (Gloria) Guo, Chanel Huang

Office hours & locations tba, etc.

• Lectures
» MWF 2:30-3:20, BAG 261

Web Page

• All info is on the CSE 413 web:

http://www.cs.washington.edu/education/courses/413/11sp

• Look there for schedules, contact information,

assignments, links to discussion boards and

mailing lists, etc.

CSE 413 Sp11 - Introduction

5

CSE 413 Sp11 - Introduction

6

CSE 413 E-mail List

• If you are registered for the course you will be
automatically added.

• E-mail list is used for posting important
announcements by instructor and TAs

• You are responsible for anything sent here

» Mail to this list is sent to your UW email address

CSE 413 Sp11 - Introduction

7

CSE 413 Discussion Board

• Use the Catalyst GoPost message board to stay
in touch outside of class

» Staff will watch and contribute too

• Use:

» General discussion of class contents

» Hints and ideas about assignments (but not
detailed code or solutions)

» Other topics related to the course

Course Computing

• College of Arts & Sciences Instructional

Computing Lab

(aka Math Science Computing Labs)

• Or work from home – all software is freely

available

» See links on the course web

CSE 413 Sp11 - Introduction

8

CSE 413 Sp11 - Introduction

9

Grading: Estimated Breakdown

• Approximate Grading:

» Homework + Project: 55%

» Midterm: 15% (TBA, est. 5/6 in class)

» Final: 25% (Tue. June 7, 2:30-4:20)

» Participation 5%

• Assignments:
» Weights may differ to account for relative difficulty of

assignments

» Assignments will be a mix of shorter written exercises
and longer programming projects

CSE 413 Sp11 - Introduction

10

Deadlines & Late Policy

• Assignments generally due Thursday evenings
via the web

» Exact times and dates given for each assignment

• Late policy: 4 late days per person

» At most 2 on any single assignment

» Used only in integer units

» For group projects, both students must have late
days available and both are charged if used

» Don’t burn them up early!!

CSE 413 Sp11 - Introduction

11

Academic (Mis-)Conduct

• You are expected to do your own work

» Exceptions (group work), if any, will be clearly announced

• Things that are academic mis-conduct:

» Sharing solutions, doing work for or accepting work from
others

» Searching for solutions on the web

» Consulting solutions to assignments or projects from
previous offerings of this course

• Integrity is a fundamental principle in the academic
world (and elsewhere) – we and your classmates trust
you; don’t abuse that trust

CSE 413 Sp11 - Introduction

12

Homework for Today!!

1) Information Sheet (aka Assignment #0):

Bring to lecture on Friday April 1

2) Download and Install DrRacket

» (and play with it!)

3) Reading: See “Scheme Resources” on Web page

4) Assignment #1: (coming soon!)

CSE 413 Sp11 - Introduction

13

Reading

• No required text – we’ll make some suggestions as we go along

• Other references available from course web page

• Check “Functional Programming & Scheme” Link for:

» Notes on Scheme

» Revised5 Report on the Algorithmic Language Scheme (R5RS)

• The language definition: this is your friend!

» Link to Structure and Interpretation of Computer Programs (Abelson,

Sussman, & Sussman)

• Detailed textbook from MIT – overkill for us, but fantastic!

CSE 413 Sp11 - Introduction

14

Tentative Course Schedule

• Week 1: Scheme

• Week 2: Scheme

• Week 3: Scheme

• Week 4: Scheme wrapup/intro to Ruby

• Weeks 5-6: Object-oriented programming and Ruby; scripting
languages

• Weeks 7-9: Language implementation, compilers and
interpreters

• Week 10: garbage collection; special topics

CSE 413 Sp11 - Introduction

15

Now where were we?

• Programming Languages

• Their Implementation

CSE 413 Sp11 - Introduction

16

Why Scheme?

• Focus on “functional programming” because
of simplicity, power

• Stretch our brains – different ways of thinking
about programming and computation

» Often a good way to think if stuck in C/Java/…

• Let go of Java/C/… for now

» Easier to approach functional programming on its
own terms

» We’ll make the connections back to what you’ve
seen before later in the quarter

Functional Programming

• Programming consists of defining and evaluating
functions

• No side effects (assignment)

» An expression will always yield the same value when
evaluated (referential transparency)

• No loops (use recursion instead)

• Scheme includes assignment and loops but they
are not needed except in specific circumstances
and we will avoid them

CSE 413 Sp11 - Introduction

17

CSE 413 Sp11 - Introduction

18

Primitive Expressions

• constants

» integer :

» rational :

» real :

» boolean :

• variable names (symbols)

» Names can contain almost any character except

white space and parentheses

» Stick with simple names like value, x, iter, ...

CSE 413 Sp11 - Introduction

19

Compound Expressions

• Either a combination or a special form

1. Combination : (operator operand operand …)

» there are quite a few pre-defined operators

» We can define our own operators

2. Special form

» keywords in the language

» eg, define, if, cond

CSE 413 Sp11 - Introduction

20

Combinations

• (operator operand operand …)

• this is prefix notation, the operator comes first

• a combination always denotes a procedure application

• the operator is a symbol or an expression, the applied

procedure is the associated value

» +, -, abs, my-function

» characters like * and + are not special; if they do not stand

alone then they are part of some name

CSE 413 Sp11 - Introduction

21

Evaluating Combinations

• To evaluate a combination

» Evaluate the subexpressions of the combination

» Apply the procedure that is the value of the leftmost

subexpression (the operator) to the arguments that are

the values of the other subexpresions (the operands)

• Examples (demo)

CSE 413 Sp11 - Introduction

22

Evaluating Special Forms

• Special forms have unique evaluation rules

• (define x 3) is an example of a special

form; it is not a combination

» the evaluation rule for a simple define is "associate

the given name with the given value"

• There are a few more special forms, but there

are surprisingly few of them compared to other

languages

CSE 413 Sp11 - Introduction

23

Procedures

CSE 413 Sp11 - Introduction

24

Recall the define special form

• Special forms have unique evaluation rules

• (define x 3) is an example of a special

form; it is not a combination

» the evaluation rule for a simple define is "associate

the given name with the given value"

CSE 413 Sp11 - Introduction

25

Define and name a variable

• (define name expr)

» define - special form

» name - name that the value of expr is bound to

» expr - expression that is evaluated to give the

value for name

• define is valid only at the top level of a

<program> and at the beginning of a <body>

CSE 413 Sp11 - Introduction

26

Define and name a procedure

• (define (name formal params) body)

» define - special form

» name - the name that the procedure is bound to

» formal params - names used within the body of

procedure

» body - expression (or sequence of expressions)

that will be evaluated when the procedure is

called.

» The result of the last expression in the body will

be returned as the result of the procedure call

CSE 413 Sp11 - Introduction

27

Example definitions

(define pi 3.1415926535)

(define (area-of-disk r)

 (* pi (* r r)))

(define (area-of-ring outer inner)

 (- (area-of-disk outer)

 (area-of-disk inner)))

CSE 413 Sp11 - Introduction

28

Defined procedures are "first class"

• Compound procedures that we define are used

exactly the same way the primitive procedures

provided in Scheme are used

» names of built-in procedures are not treated

specially; they are simply names that have been

pre-defined

» you can't tell whether a name stands for a

primitive (built-in) procedure or a compound

(defined) procedure by looking at the name or how

it is used

CSE 413 Sp11 - Introduction

29

Booleans

• Recall that one type of data object is boolean

» #t (true) or #f (false)

• We can use these explicitly or by calculating

them in expressions that yield boolean values

• An expression that yields a true or false value

is called a predicate

» #t =>

» (< 5 5) =>

» (> pi 0) =>

CSE 413 Sp11 - Introduction

30

Conditional expressions

• As in all languages, we need to be able to

make decisions based on inputs and do

something depending on the result

CSE 413 Sp11 - Introduction

31

Special form: cond

• (cond clause1 clause2 ... clausen)

• each clause is of the form

» (predicate expression)

• the last clause can be of the form

» (else expression)

CSE 413 Sp11 - Introduction

32

Example: sign.scm

; return the sign of x as -1, 0, or 1

(define (sign x)

 (cond

 ((< x 0) -1)

 ((= x 0) 0)

 ((> x 0) +1)))

CSE 413 Sp11 - Introduction

33

Special form: if

• (if predicate consequent alternate)

• (if predicate consequent)

CSE 413 Sp11 - Introduction

34

Examples : abs.scm

; absolute value function

(define (abs a)

CSE 413 Sp11 - Introduction

35

Logical composition

• (and e1 e2... en)

• (or e1 e2... en)

• (not e)

• Scheme interprets the expressions ei one at a time in

left-to-right order until it determines the correct value

CSE 413 Sp11 - Introduction

36

in-range.scm

; true if val is lo <= val <= hi

(define (in-range lo val hi)

 (and (<= lo val)

 (<= val hi)))

