
CSE 413 Sp11 - Scheme - Lists

1

CSE 413: Programming Languages

and their Implementation

Scheme - Lists

Hal Perkins

Spring 2011

CSE 413 Sp11 - Scheme - Lists

2

(cons a b)

• Takes a and b as args, returns a compound

data object that contains a and b as its parts

• We can extract the two parts with accessor

functions car and cdr

x y

(define a (cons ‘x ‘y)) a

car and cdr

• We can build arbitrary pairs with cons, but

the workhorse data structures in Scheme are

proper lists

CSE 413 Sp11 - Scheme - Lists

3

x y

(define a (cons ‘x ‘y))
a

(car a)

(cdr a)

CSE 413 Sp11 - Scheme - Lists

4

Lists

• By convention, a list is a sequence of linked pairs

» car of each pair is the data element

» cdr of each pair points to list tail or the empty list

e

1

2

3

CSE 413 Sp11 - Scheme - Lists

5

nil

• if there is no element present for the car or cdr

branch of a pair, we indicate that with the

value nil

» '() represents the empty list (quoted to prevent

evaluation)

• (null? z) is true if z is '()

(define d (cons ‘x '()))

(car d)

(cdr d)

(null? (car d))

(null? (cdr d))

x

d

CSE 413 Sp11 - Scheme - Lists

6

List construction

(define e (cons 1 (cons 2 (cons 3 '()))))

e

1

2

3

(define e (list 1 2 3))

CSE 413 Sp11 - Scheme - Lists

7

procedure list

(list a b c ...)

• list returns a newly allocated list of its arguments

» the arguments can be atomic items like numbers or quoted
symbols

» the arguments can be other lists

• The backbone structure of a list is always the same

» a sequence of linked pairs, ending with a pointer to null
(the empty list)

» the car element of each pair is the list item

» the list items can be other lists

CSE 413 Sp11 - Scheme - Lists

8

List structure

4

5

6

(define a (list 4 5 6))

a

(define b (list 7 a 8))

4

5

6

a

7

8

b

CSE 413 Sp11 - Scheme - Lists

9

Examples of list building

(list 1 2)

(cons 1 (cons 2 '()))

1

2

(cons 1 (list 2))

CSE 413 Sp11 - Scheme - Lists

10

How to process lists?

• A list is zero or more connected pairs

• Each node is a pair

• Thus the parts of a list (this pair, following

pairs) are lists

• A natural way to express list operations?

CSE 413 Sp11 - Scheme - Lists

11

(define (length m)

 (if (null? m)

 0

 (+ 1 (length (cdr m)))))

cdr down

CSE 413 Sp11 - Scheme - Lists

12

sum the items in a list

(add-items (list 2 5 4))

2

5

4

