
Parsing & Context-

Free Grammars

CSE 413 Spring 2011

1 CSE 413 Spring 2011 - Parsers

Agenda

 Parsing overview

 Context free grammars

 Ambiguous grammars

2 CSE 413 Spring 2011 - Parsers

Parsing

 The syntax of most programming languages can

be specified by a context-free grammar (CGF)

 Parsing: Given a grammar G and a sentence w

in L(G), traverse the derivation (parse tree) for

w in some standard order and do something

useful at each node

 The tree might not be produced explicitly, but the

control flow of a parser corresponds to a traversal

3 CSE 413 Spring 2011 - Parsers

Old

Example

a = 1 ; if (a + 1) b = 2 ;

4

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

program

program

statement
statement

ifStmt

assignStmt
statement

expr assignStmt

expr expr

int id

id expr

int

id expr

int

G

w

CSE 413 Spring 2011 - Parsers

“Standard Order”

 For practical reasons we want the parser

to be deterministic (no backtracking), and

we want to examine the source program

from left to right.

(i.e., parse the program in linear time in the

order it appears in the source file)

5 CSE 413 Spring 2011 - Parsers

Common Orderings

 Top-down

 Start with the root

 Traverse the parse tree depth-first, left-to-right

(leftmost derivation)

 LL(k)

 Bottom-up

 Start at leaves and build up to the root

 Effectively a rightmost derivation in reverse(!)

 LR(k) and subsets (LALR(k), SLR(k), etc.)

6 CSE 413 Spring 2011 - Parsers

“Something Useful”

 At each point (node) in the traversal, perform

some semantic action

 Construct nodes of full parse tree (rare)

 Construct abstract syntax tree (common)

 Construct linear, lower-level representation (more

common in later parts of a modern compiler)

 Generate target code or interpret on the fly (1-pass

compiler & interpreters; not common in production

compilers – but what we will do for our project)

7 CSE 413 Spring 2011 - Parsers

Context-Free Grammars (review)

 Formally, a grammar G is a tuple <N,Σ,P,S>

where:

 N a finite set of non-terminal symbols

 Σ a finite set of terminal symbols

 P a finite set of productions

 A subset of N × (N Σ)*

 S the start symbol, a distinguished element of N

 If not specified otherwise, this is usually assumed to be the

non-terminal on the left of the first production

9 CSE 413 Spring 2011 - Parsers

Standard Notations

10

 a, b, c elements of Σ

 w, x, y, z elements of Σ*

 A, B, C elements of N

 X, Y, Z elements of N Σ

 , , elements of (N Σ)*

 A or A ::= if <A, > in P

CSE 413 Spring 2011 - Parsers

Derivation Relations (1)

 A => iff A ::= in P

derives

 A =>* w if there is a chain of productions

starting with A that generates w

 transitive closure

11 CSE 413 Spring 2011 - Parsers

Derivation Relations (2)

 w A =>lm w iff A ::= in P

derives leftmost

 A w =>rm w iff A ::= in P

derives rightmost

 Parsers normally work with only leftmost

or rightmost derivations – not random

orderings

12 CSE 413 Spring 2011 - Parsers

Languages

 For A in N, L(A) = { w | A =>* w }

 i.e., set of strings (words, terminal symbols)

generated by nonterminal A

 If S is the start symbol of grammar G, we

define L(G) = L(S)

13 CSE 413 Spring 2011 - Parsers

Reduced Grammars

 Grammar G is reduced iff for every

production A ::= in G there is some

derivation

 S =>* x A z => x z =>* xyz

 i.e., no production is useless

 Convention: we will use only reduced

grammars

14 CSE 413 Spring 2011 - Parsers

Example

 Top down, Leftmost derivation for: a = 1 + b ;

15

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) stmt
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

CSE 413 Spring 2011 - Parsers

Example

 Grammar

 S ::= aABe

 A ::= Abc | b

 B ::= d

 Top down, leftmost

derivation of: abbcde

16 CSE 413 Spring 2011 - Parsers

Ambiguity

 Grammar G is unambiguous iff every w in L(G)
has a unique leftmost (or rightmost) derivation
 Fact: either unique leftmost or unique rightmost

implies the other

 A grammar without this property is ambiguous
 Note that other grammars that generate the same

language may be unambiguous

 We need unambiguous grammars for parsing

17 CSE 413 Spring 2011 - Parsers

Example: Ambiguous Grammar for

Arithmetic Expressions

 expr ::= expr + expr | expr - expr

 | expr * expr | expr / expr | int

 int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 Exercise: show that this is ambiguous

How? Show two different leftmost or

rightmost derivations for the same string

Equivalently: show two different parse trees

for the same string

18 CSE 413 Spring 2011 - Parsers

Example (cont)

 Give a leftmost derivation of 2+3*4 and show the

parse tree

19 CSE 413 Spring 2011 - Parsers

Example (cont)

 Give a different leftmost derivation of

2+3*4 and show the parse tree

20 CSE 413 Spring 2011 - Parsers

Another example

 Give two different derivations of 5+6+7

21 CSE 413 Spring 2011 - Parsers

What’s going on here?

 This grammar has no notion of
precedence or associatively

 Standard solution

Create a non-terminal for each level of
precedence

 Isolate the corresponding part of the grammar

Force the parser to recognize higher
precedence subexpressions first

22 CSE 413 Spring 2011 - Parsers

Classic Expression Grammar

expr ::= expr + term | expr – term | term

term ::= term * factor | term / factor | factor

factor ::= int | (expr)

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

23 CSE 413 Spring 2011 - Parsers

Check: Derive 2 + 3 * 4

24 CSE 413 Spring 2011 - Parsers

Check: Derive 5 + 6 + 7

 Note interaction between left- vs right-recursive rules

and resulting associativity

25 CSE 413 Spring 2011 - Parsers

Check: Derive 5 + (6 + 7)

26 CSE 413 Spring 2011 - Parsers

Another Classic Example

 Grammar for conditional statements

stmt ::= if (cond) stmt

 | if (cond) stmt else stmt

 | assign

Exercise: show that this is ambiguous

 How?

27 CSE 413 Spring 2011 - Parsers

One Derivation

if (cond) if (cond) stmt else stmt

28

stmt ::= if (cond) stmt
 | if (cond) stmt else stmt
 | assign

CSE 413 Spring 2011 - Parsers

Another Derivation

if (cond) if (cond) stmt else stmt

29

stmt ::= if (cond) stmt
 | if (cond) stmt else stmt
 | assign

CSE 413 Spring 2011 - Parsers

Solving if Ambiguity

 Fix the grammar to separate if statements
with else from if statements with no else

Done in original Java reference grammar

Adds lots of non-terminals
 Need productions for things like “while statement that

has unmatched if” and “while statement with only
matched ifs”, etc. etc. etc.

 Use some ad-hoc rule in parser

 “else matches closest unpaired if”

30 CSE 413 Spring 2011 - Parsers

Parser Tools and Operators

 Most parser tools can cope with

ambiguous grammars

Makes life simpler if used with discipline

 Typically one can specify operator

precedence & associativity

Allows simpler, ambiguous grammar with

fewer nonterminals as basis for generated

parser, without creating problems

31 CSE 413 Spring 2011 - Parsers

Parser Tools and Ambiguous

Grammars

 Possible rules for resolving other problems

Earlier productions in the grammar preferred

to later ones

Longest match used if there is a choice

 Parser tools normally allow for this

But be sure that what the tool does is really

what you want

32 CSE 413 Spring 2011 - Parsers

Or…

 If the parser is hand-written, either fudge

the grammar or the parser or cheat where

it helps.

to be continued…

33 CSE 413 Spring 2011 - Parsers

