
Parsing & Context-

Free Grammars

CSE 413 Spring 2011

1 CSE 413 Spring 2011 - Parsers

Agenda

 Parsing overview

 Context free grammars

 Ambiguous grammars

2 CSE 413 Spring 2011 - Parsers

Parsing

 The syntax of most programming languages can

be specified by a context-free grammar (CGF)

 Parsing: Given a grammar G and a sentence w

in L(G), traverse the derivation (parse tree) for

w in some standard order and do something

useful at each node

 The tree might not be produced explicitly, but the

control flow of a parser corresponds to a traversal

3 CSE 413 Spring 2011 - Parsers

Old

Example

a = 1 ; if (a + 1) b = 2 ;

4

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

program

program

statement
statement

ifStmt

assignStmt
statement

expr assignStmt

expr expr

int id

id expr

int

id expr

int

G

w

CSE 413 Spring 2011 - Parsers

“Standard Order”

 For practical reasons we want the parser

to be deterministic (no backtracking), and

we want to examine the source program

from left to right.

(i.e., parse the program in linear time in the

order it appears in the source file)

5 CSE 413 Spring 2011 - Parsers

Common Orderings

 Top-down

 Start with the root

 Traverse the parse tree depth-first, left-to-right

(leftmost derivation)

 LL(k)

 Bottom-up

 Start at leaves and build up to the root

 Effectively a rightmost derivation in reverse(!)

 LR(k) and subsets (LALR(k), SLR(k), etc.)

6 CSE 413 Spring 2011 - Parsers

“Something Useful”

 At each point (node) in the traversal, perform

some semantic action

 Construct nodes of full parse tree (rare)

 Construct abstract syntax tree (common)

 Construct linear, lower-level representation (more

common in later parts of a modern compiler)

 Generate target code or interpret on the fly (1-pass

compiler & interpreters; not common in production

compilers – but what we will do for our project)

7 CSE 413 Spring 2011 - Parsers

Context-Free Grammars (review)

 Formally, a grammar G is a tuple <N,Σ,P,S>

where:

 N a finite set of non-terminal symbols

 Σ a finite set of terminal symbols

 P a finite set of productions

 A subset of N × (N  Σ)*

 S the start symbol, a distinguished element of N

 If not specified otherwise, this is usually assumed to be the

non-terminal on the left of the first production

9 CSE 413 Spring 2011 - Parsers

Standard Notations



10

 a, b, c elements of Σ

 w, x, y, z elements of Σ*

 A, B, C elements of N

 X, Y, Z elements of N Σ

 , ,  elements of (N Σ)*

 A  or A ::=  if <A, > in P



CSE 413 Spring 2011 - Parsers

Derivation Relations (1)

  A  =>    iff A ::=  in P

derives

 A =>* w if there is a chain of productions

starting with A that generates w

 transitive closure

11 CSE 413 Spring 2011 - Parsers

Derivation Relations (2)

 w A  =>lm w   iff A ::=  in P

derives leftmost

  A w =>rm   w iff A ::=  in P

derives rightmost

 Parsers normally work with only leftmost

or rightmost derivations – not random

orderings

12 CSE 413 Spring 2011 - Parsers

Languages

 For A in N, L(A) = { w | A =>* w }

 i.e., set of strings (words, terminal symbols)

generated by nonterminal A

 If S is the start symbol of grammar G, we

define L(G) = L(S)

13 CSE 413 Spring 2011 - Parsers

Reduced Grammars

 Grammar G is reduced iff for every

production A ::=  in G there is some

derivation

 S =>* x A z => x  z =>* xyz

 i.e., no production is useless

 Convention: we will use only reduced

grammars

14 CSE 413 Spring 2011 - Parsers

Example

 Top down, Leftmost derivation for: a = 1 + b ;

15

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) stmt
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

CSE 413 Spring 2011 - Parsers

Example

 Grammar

 S ::= aABe

 A ::= Abc | b

 B ::= d

 Top down, leftmost

derivation of: abbcde

16 CSE 413 Spring 2011 - Parsers

Ambiguity

 Grammar G is unambiguous iff every w in L(G)
has a unique leftmost (or rightmost) derivation
 Fact: either unique leftmost or unique rightmost

implies the other

 A grammar without this property is ambiguous
 Note that other grammars that generate the same

language may be unambiguous

 We need unambiguous grammars for parsing

17 CSE 413 Spring 2011 - Parsers

Example: Ambiguous Grammar for

Arithmetic Expressions

 expr ::= expr + expr | expr - expr

 | expr * expr | expr / expr | int

 int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 Exercise: show that this is ambiguous

How? Show two different leftmost or

rightmost derivations for the same string

Equivalently: show two different parse trees

for the same string

18 CSE 413 Spring 2011 - Parsers

Example (cont)

 Give a leftmost derivation of 2+3*4 and show the

parse tree

19 CSE 413 Spring 2011 - Parsers

Example (cont)

 Give a different leftmost derivation of

2+3*4 and show the parse tree

20 CSE 413 Spring 2011 - Parsers

Another example

 Give two different derivations of 5+6+7

21 CSE 413 Spring 2011 - Parsers

What’s going on here?

 This grammar has no notion of
precedence or associatively

 Standard solution

Create a non-terminal for each level of
precedence

 Isolate the corresponding part of the grammar

Force the parser to recognize higher
precedence subexpressions first

22 CSE 413 Spring 2011 - Parsers

Classic Expression Grammar

expr ::= expr + term | expr – term | term

term ::= term * factor | term / factor | factor

factor ::= int | (expr)

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

23 CSE 413 Spring 2011 - Parsers

Check: Derive 2 + 3 * 4

24 CSE 413 Spring 2011 - Parsers

Check: Derive 5 + 6 + 7

 Note interaction between left- vs right-recursive rules

and resulting associativity

25 CSE 413 Spring 2011 - Parsers

Check: Derive 5 + (6 + 7)

26 CSE 413 Spring 2011 - Parsers

Another Classic Example

 Grammar for conditional statements

stmt ::= if (cond) stmt

 | if (cond) stmt else stmt

 | assign

Exercise: show that this is ambiguous

 How?

27 CSE 413 Spring 2011 - Parsers

One Derivation

if (cond) if (cond) stmt else stmt

28

stmt ::= if (cond) stmt
 | if (cond) stmt else stmt
 | assign

CSE 413 Spring 2011 - Parsers

Another Derivation

if (cond) if (cond) stmt else stmt

29

stmt ::= if (cond) stmt
 | if (cond) stmt else stmt
 | assign

CSE 413 Spring 2011 - Parsers

Solving if Ambiguity

 Fix the grammar to separate if statements
with else from if statements with no else

Done in original Java reference grammar

Adds lots of non-terminals
 Need productions for things like “while statement that

has unmatched if” and “while statement with only
matched ifs”, etc. etc. etc.

 Use some ad-hoc rule in parser

 “else matches closest unpaired if”

30 CSE 413 Spring 2011 - Parsers

Parser Tools and Operators

 Most parser tools can cope with

ambiguous grammars

Makes life simpler if used with discipline

 Typically one can specify operator

precedence & associativity

Allows simpler, ambiguous grammar with

fewer nonterminals as basis for generated

parser, without creating problems

31 CSE 413 Spring 2011 - Parsers

Parser Tools and Ambiguous

Grammars

 Possible rules for resolving other problems

Earlier productions in the grammar preferred

to later ones

Longest match used if there is a choice

 Parser tools normally allow for this

But be sure that what the tool does is really

what you want

32 CSE 413 Spring 2011 - Parsers

Or…

 If the parser is hand-written, either fudge

the grammar or the parser or cheat where

it helps.

to be continued…

33 CSE 413 Spring 2011 - Parsers

