
Ruby Blocks, Procs,

and Closures

CSE 413 Spring 2011

Blocks

 Any method call can be followed by a

block. The block is executed by the

method – when depends on the method
words = [“fee”, “fie”, “foe”, “fum”]

words.each { | w | puts w }

all_words = “”

words.each { | w | all_words = all_words + w + “ ” }

Block Execution

 A block is executed in the context of the
method call

Block has access to variables at the call location

Return in a block returns from surrounding
method(!)

def search(it, words)

 words.each { | w | if it == w return }

 puts “not found”

end

yield

 Any method call can be followed by a

trailing block. A method “calls” the block

with a yield statement.
def repeat Output:

 yield hello

 yield hello

end

repeat { puts “hello” }

yield with arguments

 If the block has parameters, use

expressions with yield to pass arguments
def xvii

 yield 17

end

xvii { | n | puts n+1 }

This is exactly what an iterator does

Blocks and Procs

 Blocks (and methods) are not objects in Ruby
– i.e., not things that can be passed around
as first-class values

 But we can create a Proc object from a block

Procs are real closures consisting of the block
and the surrounding environment

Variations: procs and lambdas; slightly different
behavior

Several different ways to construct these; see the
language documentation for details

Making Procs

 A method can have a parameter that

explicitly represents the block
def return_a_block (& block)

 block.call(17)

 return block

end

The „&‟ turns the block into a proc object

Proc objects support a “call” method

Proc.new; lambdas

 Can also create a proc object explicitly
p = Proc.new { | x, y | x+y }

…

p.call(x,y)

 The kernel‟s lambda method also creates

proc objects
is_positive = lambda {|x| x > 0 }

Procs vs. Lambdas

 A Proc is a block wrapped in an object –

and behaves just like a block

 In particular, a return in a Proc will return from

the surrounding method where the Proc‟s

closure was created

 Error if that method has already terminated

 A Lambda is more like a method

Return just exits from the lambda

Functional Programming in Ruby

 Ruby is not a functional programming
language, but with blocks, procs, and
lambdas, you can do pretty much anything
you could in a functional language

 Big difference is that Ruby is object-oriented,
meaning dynamic dispatch, classes,
inheritance, etc.
More to come on that…

 Reference on Ruby blocks, etc.: The Ruby
Programming Language, ch. 6; Flanagan &
Matsumoto

