Ruby Tips, Modules &

Mixins, Duck Typing &
Inheritance

Overview

m Next big topic Is typing, classes, and
Inheritance

m But first, a couple of useful things
Where's "main™?
Shorthand for getters/setters
(Later) an example of an “each” iterator

m Then modules & mixins; duck typing

Where’s "“main’”?

m Traditional programming languages start
programs in publicstaticvoidmain or equyv.
m Ruby? No main method
A “program” is just a sequence of statements /

expressions executed in order

m But these can include class definitions, methods

m Code outside a class belongs to the default, top-
level Object class

Getters/Setters
class PosRat
" Recall that a” def initialize(num, denom=1)
Instance variables are @num = num
really private — need @denom = denom
) end
to define methods to
access them def num
@num
end

def num=(value)
@num = value
end

An Alternative

m \Was: m Instead, can use
def num
@num attr_reader :num, :denom
end
def denom
@denom m There is a similar

end attr _writer shortcut

" S
Organizing Large(r) Programs

m Issues

ldea: divide code into manageable
components

Also: want to take advantage of reusable
chunks of code (libraries, classes, etc.)

m Strategy: Split code into separate files
Typically, one or more classes per file
Use “require” (or sometimes “load”) to access
What about components that aren’t classes?

Namespaces & Modules

m [dea: Want to break larger programs into
pieces where names can be reused
iIndependently

Avoids clashes combining libraries written by
different organizations or at different times

m Ruby solution: modules

Separate source files that define name
spaces, but not necessarily classes

Example (from Programming Ruby)

module Trig
Pl=3.14
def Trig.sin(x)
...
end
def Trig.cos(x)
...
end
end

module Moral
VERY BAD =0
BAD =1
def Moral.sin(badness)
...
end
end

Using Modules

#... m Key point: Each
require ‘trig’ module defines a
require ‘moral’ namespace

 Trin o L No clashes with same
y = Trig.sin(Trig::Pl/4) names in other

penance = Moral.sin(modules

Moral::VERY_BAD) m Module methods are
... a lot like class
methods

BN
MIXINS

m Modules can be used to add behavior to
classes — mixins

Define instance methods and data in module

“include” the module in a class — incorporates
the module definitions into the class

= Now the class has its original behavior plus
whatever was added in the mixin

Provides most of the capabilities of multiple
iInheritance and/or Java interfaces

" S
Example

module Debug

def trace
...

end

end

class Something
Include debug
...

end

class SomethingElse
Include debug
...
end

m Both classes have the
trace method defined,
and it can interact with
other methods and data
In the host class as If it
was defined there

(trace is not “shared” by the
classes and can’t pass
Information back and forth)

Exploiting Mixins — Comparable

m The real power of this Is when mixins
build on or interact with code In the
classes that use them

m Example: library mixin Comparable
Class must define operator <=>
m (a <=>Dbreturns -1, 0, +1 if a<b, a==b, a>b)

Comparable mixin uses “client” <=> to define
<, <=, ==, >=, >, and between? for that class

" J
Another example — Enumerable

m Container/collection class provides an

each method to call a block for each item
INn the collection

m Enumerable module builds many
mapping-like operations on top of this
map, include?, find_all, ...

If items in the collection implement <=> you
also get sort, min, max, ...

lterator Example

m Suppose we want to define a class of
Seqguence objects that have a from, to,
and step, and contain numbers x such that

from <= x <= to, and
X = from + n*step for integer value n

(Credit: Ruby Programming Language, Flanagan & Matsumoto)

" J
Seguence Class & Constructor

class Sequence
mixin all of the methods in Enumerable
Include Enumerable

def initialize(from, to, step)
@from, @to, @step = from, to, step
end

" J
Seguence each method

m To add an iterator to Sequence and make it also
work with Enumerable, all we need is this:

def each
X = @from
while x <= @to
yield x
X += @step
end
end

" S
Types In Ruby

m Ruby Is dynamically typed — everything Is
an object

m Only notion of an object’s “type” is what
messages it can respond to

l.e., whether it has methods for a particular
message

This can change dynamically for either all
objects of a class or for individual objects

Duck Typing

m “If it walks like a duck and talks like a
duck, it must be a duck”
Even ifitisn’t
All that matters is how an object behaves
= (.e, what messages it understands)

Thought Experiment (1)

m \What must be true about x for this method
to work?

def foo x
X.m + X.n
end

" S
Thought Experiment (2)

m \What Is true about x?
X.m + X.Nn

m Less than you might think
X must have 0-argument methods m and n

The object returned by x.m must have a +
method that takes one argument

The object returned by x.n must have
whatever methods are needed by x.m.+ (!)

"
Duck Typing Tradeoffs

m Plus
Convenient, promotes code reuse

All that matters is what messages an object can
receive

m Minus
“Obvious” equivalences don’t hold: x+x, 2*x, x*2

May expose more about an object than might be
desirable (more coupling in code)

May allow objects to “work™ in unintended /
Inappropriate contexts

" A
Classes & Inheritance

m Ruby vs Java:

Subclassing in Ruby is not about type checking
(because of dynamic typing)

Subclassing in Ruby is about inheriting methods
m Can use super to refer to inherited code
m See examples in points.rb

ThreeDPoint inherits methods x and y
ColorPoint inherits distance methods

Overriding

m With dynamic typing, inheritance alone Is
just avoiding cut/paste
m Overriding Is the key difference

When a method in a superclass makes a self

call, it resolves to a method defined in the
subclass If there is one

Example: distFromOrigin2 in PolarPoint

" J
Ruby — Why Subclasses?

m Since we can add/change methods on the fly,
why use a subclass?

m Instead of class ColorPoint, why not just add
a color field to Point?
Can’t do this in Java

Can do it in Ruby, but it changes all Point
Instances (including subclasses), even existing
ones

Pro: now all Point classes have a color

Con: Maybe that breaks something else or is the
wrong abstraction for some Point clients

