
Ruby Tips, Modules &

Mixins, Duck Typing &

Inheritance

CSE 413 Spring 2011

Overview

 Next big topic is typing, classes, and

inheritance

 But first, a couple of useful things

Where‟s “main”?

Shorthand for getters/setters

(Later) an example of an “each” iterator

 Then modules & mixins; duck typing

Where‟s “main”?

 Traditional programming languages start

programs in publicstaticvoidmain or equv.

 Ruby? No main method

A “program” is just a sequence of statements /

expressions executed in order

 But these can include class definitions, methods

 Code outside a class belongs to the default, top-

level Object class

Getters/Setters

 Recall that all

instance variables are

really private – need

to define methods to

access them

class PosRat

 def initialize(num, denom=1)

 @num = num

 @denom = denom

 end

 def num

 @num

 end

 def num=(value)

 @num = value

 end

 …

An Alternative

 Was:

 def num

 @num

 end

 def denom

 @denom

 end

 …

 Instead, can use

 attr_reader :num, :denom

 There is a similar

attr_writer shortcut

Organizing Large(r) Programs

 Issues

 Idea: divide code into manageable
components

Also: want to take advantage of reusable
chunks of code (libraries, classes, etc.)

 Strategy: Split code into separate files

Typically, one or more classes per file

Use “require” (or sometimes “load”) to access

What about components that aren‟t classes?

Namespaces & Modules

 Idea: Want to break larger programs into

pieces where names can be reused

independently

Avoids clashes combining libraries written by

different organizations or at different times

 Ruby solution: modules

Separate source files that define name

spaces, but not necessarily classes

Example (from Programming Ruby)

module Trig

 PI = 3.14

 def Trig.sin(x)

 # …

 end

 def Trig.cos(x)

 # …

 end

end

module Moral

 VERY_BAD = 0

 BAD = 1

 def Moral.sin(badness)

 # …

 end

end

Using Modules

 # …

 require „trig‟

 require „moral‟

 y = Trig.sin(Trig::PI/4)

 penance = Moral.sin(

 Moral::VERY_BAD)

 # …

 Key point: Each
module defines a
namespace
 No clashes with same

names in other
modules

 Module methods are
a lot like class
methods

Mixins

 Modules can be used to add behavior to
classes – mixins

Define instance methods and data in module

“include” the module in a class – incorporates
the module definitions into the class
 Now the class has its original behavior plus

whatever was added in the mixin

Provides most of the capabilities of multiple
inheritance and/or Java interfaces

Example

module Debug

 def trace

 # …

 end

end

class Something

 include debug

 # …

end

class SomethingElse

 include debug

 # …

 end

 Both classes have the
trace method defined,
and it can interact with
other methods and data
in the host class as if it
was defined there
 (trace is not “shared” by the

classes and can‟t pass
information back and forth)

Exploiting Mixins – Comparable

 The real power of this is when mixins

build on or interact with code in the

classes that use them

 Example: library mixin Comparable

Class must define operator <=>

 (a <=> b returns -1, 0, +1 if a<b, a==b, a>b)

Comparable mixin uses “client” <=> to define

<, <=, ==, >=, >, and between? for that class

Another example – Enumerable

 Container/collection class provides an
each method to call a block for each item
in the collection

 Enumerable module builds many
mapping-like operations on top of this

map, include?, find_all, …

 If items in the collection implement <=> you
also get sort, min, max, …

Iterator Example

 Suppose we want to define a class of

Sequence objects that have a from, to,

and step, and contain numbers x such that

 from <= x <= to, and

x = from + n*step for integer value n

(Credit: Ruby Programming Language, Flanagan & Matsumoto)

Sequence Class & Constructor

class Sequence

 # mixin all of the methods in Enumerable

 include Enumerable

 def initialize(from, to, step)

 @from, @to, @step = from, to, step

 end

 …

Sequence each method

 To add an iterator to Sequence and make it also
work with Enumerable, all we need is this:

def each

 x = @from

 while x <= @to

 yield x

 x += @step

 end

end

Types in Ruby

 Ruby is dynamically typed – everything is

an object

 Only notion of an object‟s “type” is what

messages it can respond to

 i.e., whether it has methods for a particular

message

This can change dynamically for either all

objects of a class or for individual objects

Duck Typing

 “If it walks like a duck and talks like a

duck, it must be a duck”

Even if it isn‟t

All that matters is how an object behaves

 (i.e, what messages it understands)

Thought Experiment (1)

 What must be true about x for this method

to work?

def foo x

 x.m + x.n

end

Thought Experiment (2)

 What is true about x?

x.m + x.n

 Less than you might think

x must have 0-argument methods m and n

The object returned by x.m must have a +
method that takes one argument

The object returned by x.n must have
whatever methods are needed by x.m.+ (!)

Duck Typing Tradeoffs

 Plus

Convenient, promotes code reuse

All that matters is what messages an object can
receive

 Minus

 “Obvious” equivalences don‟t hold: x+x, 2*x, x*2

May expose more about an object than might be
desirable (more coupling in code)

May allow objects to “work” in unintended /
inappropriate contexts

Classes & Inheritance

 Ruby vs Java:

Subclassing in Ruby is not about type checking
(because of dynamic typing)

Subclassing in Ruby is about inheriting methods

 Can use super to refer to inherited code

 See examples in points.rb

ThreeDPoint inherits methods x and y

ColorPoint inherits distance methods

Overriding

 With dynamic typing, inheritance alone is

just avoiding cut/paste

 Overriding is the key difference

When a method in a superclass makes a self

call, it resolves to a method defined in the

subclass if there is one

Example: distFromOrigin2 in PolarPoint

Ruby – Why Subclasses?

 Since we can add/change methods on the fly,
why use a subclass?

 Instead of class ColorPoint, why not just add
a color field to Point?
Can‟t do this in Java

Can do it in Ruby, but it changes all Point
instances (including subclasses), even existing
ones

Pro: now all Point classes have a color

Con: Maybe that breaks something else or is the
wrong abstraction for some Point clients

