
Introduction to Ruby

CSE 413 Spring 2011

Credit: Dan Grossman, CSE341

Why?

 Because:

Pure object-oriented language

 Interesting, not entirely obvious implications

 Interesting design decisions

 Type system, mixins, syntax, big (“friendly”) etc.

 Also interesting, but we‟re ignoring:

Scripting language

RAILS and other frameworks

Initially…

Basics of Ruby programs:

 Syntax

 Classes, methods

 Variables, fields, scope

 Dynamic typing

 Read-eval-print loop (like Scheme!), main

class, etc.

Getting Ruby

 Link to www.ruby-lang.org/en on course web.
Documentation & downloads

 Versions: 1.8.7 is ubiquitous – use that

1.9 is close enough if you insist

 Implementations:

Windows: get the “one-click installer”

OS X: Ruby 1.8 is part of developer tools

Linux: Add it if not present (be sure to include irb)

References

 Thomas “Programming Ruby” is the
standard tutorial introduction / reference

Chs. 1-9 in Ruby 1.8 (2nd) edition

Same except for regexp chapter in Ruby 1.9
edition

Or chs. 1-8 in free online 1st edition

 Lots of good/free tutorials & references on
ruby-lang and elsewhere

Ruby

 Pure object-oriented: all values are objects

Contrast w/Java primitive vs reference types

 Class-based

 Dynamically Typed

vs static typing in Java

 Convenient reflection

You now have seen most of these…

 Design choices for O-O and functional

languages

dynamically typed statically typed

functional Scheme Haskell, ML (not in 413)

object-oriented Ruby Java

Ruby vs Smalltalk (1)

 Smalltalk is the classic example of a pure

OO, class-based, dynamically-typed

language

Basically unchanged since the 80‟s

Tiny language, regular, can learn whole thing

 Integrated into a powerful, malleable, GUI

environment

Uses blocks (closures) for control structures

Ruby vs Smalltalk (2)

 Ruby

Large language, “why not” attitude
 “make programmers happy”

Scripting language, minimal syntax

Massive library (strings, regexps, RAILS)

Mixins (somewhere between Java interfaces
and C++ multiple inheritance – very neat)

Blocks and libraries for control structures and
functional-programming idioms

Ruby Key Ideas (1)

 Everything is an object (with constructor,

fields, methods)

 Every object has a class, which

determines how it responds to messages

 Dynamic typing (everything is an object)

 Dynamic dispatch (like Java; later)

 Sends to self (same as this in Java)

Ruby Key Ideas (2)

 Everything is “dynamic”

Evaluation can add/remove classes,
add/remove methods, add/remove fields, etc.

 Blocks are almost first-class anonymous
functions (later)

Can convert to/from real lambdas

 And a few C/Java-like features (loops,
return, etc.)

No Variable Declarations

 If you assign to a variable, it‟s mutation

 If the variable is not in scope, it is created(!)
(Do not mispeal things!!)
Scope is the current method

 Same with fields: if you assign to a field, that
object has that field
So different objects of the same class can have

different fields(!)

 Fewer keystrokes in programs, but compiler
catches fewer bugs – does it matter?

Naming Conventions

 Used to distinguish kinds of variables

Constants and ClassNames start with caps

 local_vars and parameters start w/lower case

@instance_variables

 @thing = thing sets an instance variable from a

local name – and creates @thing if it doesn‟t exist!

@@class_variables

$global $VARS $CONSTANTS

Protection?

 Fields are inaccessible outside instance

Define accessor/mutator methods as needed

 Methods are public, protected, private

protected: only callable from class or subclass

object

private: only callable from self

Both of these differ from Java (how?)

Unusual syntax
(add to this list as you discover things)

 Newlines often matter – example: don‟t need
semi-colon if a statement ends a line

 Message sends (function calls) often don‟t
need parentheses

 Infix operations are just message sends

 Can define operators including =, []

 Operators like + are just message sends

 e1 if e2 and similar things

 (as well is if e1 then e2)

Unusual syntax
(add to this list as you discover things)

 Classes don‟t need to be defined in one

place (similar to C#, not Java, C++)

 Class names must be capitalized

 “self” is Java‟s “this”

 Loops, conditionals, classes, methods are

self-bracketing (end with “end”)

Actually not unusual except to programmers

who have too much exposure to C/Java, etc.

A bit about Expressions

 Everything is an expression and produces a
value

 nil means “nothing”, but it is an object (an
instance of class NilClass)

 nil and false are false in a boolean context;
everything else is true (including 0)

 „strings‟ are taken literally (almost)

 “strings” allow more substitutions

 including #{expressions}

