
Introduction to Ruby

CSE 413 Spring 2011

Credit: Dan Grossman, CSE341

Why?

 Because:

Pure object-oriented language

 Interesting, not entirely obvious implications

 Interesting design decisions

 Type system, mixins, syntax, big (“friendly”) etc.

 Also interesting, but we‟re ignoring:

Scripting language

RAILS and other frameworks

Initially…

Basics of Ruby programs:

 Syntax

 Classes, methods

 Variables, fields, scope

 Dynamic typing

 Read-eval-print loop (like Scheme!), main

class, etc.

Getting Ruby

 Link to www.ruby-lang.org/en on course web.
Documentation & downloads

 Versions: 1.8.7 is ubiquitous – use that

1.9 is close enough if you insist

 Implementations:

Windows: get the “one-click installer”

OS X: Ruby 1.8 is part of developer tools

Linux: Add it if not present (be sure to include irb)

References

 Thomas “Programming Ruby” is the
standard tutorial introduction / reference

Chs. 1-9 in Ruby 1.8 (2nd) edition

Same except for regexp chapter in Ruby 1.9
edition

Or chs. 1-8 in free online 1st edition

 Lots of good/free tutorials & references on
ruby-lang and elsewhere

Ruby

 Pure object-oriented: all values are objects

Contrast w/Java primitive vs reference types

 Class-based

 Dynamically Typed

vs static typing in Java

 Convenient reflection

You now have seen most of these…

 Design choices for O-O and functional

languages

dynamically typed statically typed

functional Scheme Haskell, ML (not in 413)

object-oriented Ruby Java

Ruby vs Smalltalk (1)

 Smalltalk is the classic example of a pure

OO, class-based, dynamically-typed

language

Basically unchanged since the 80‟s

Tiny language, regular, can learn whole thing

 Integrated into a powerful, malleable, GUI

environment

Uses blocks (closures) for control structures

Ruby vs Smalltalk (2)

 Ruby

Large language, “why not” attitude
 “make programmers happy”

Scripting language, minimal syntax

Massive library (strings, regexps, RAILS)

Mixins (somewhere between Java interfaces
and C++ multiple inheritance – very neat)

Blocks and libraries for control structures and
functional-programming idioms

Ruby Key Ideas (1)

 Everything is an object (with constructor,

fields, methods)

 Every object has a class, which

determines how it responds to messages

 Dynamic typing (everything is an object)

 Dynamic dispatch (like Java; later)

 Sends to self (same as this in Java)

Ruby Key Ideas (2)

 Everything is “dynamic”

Evaluation can add/remove classes,
add/remove methods, add/remove fields, etc.

 Blocks are almost first-class anonymous
functions (later)

Can convert to/from real lambdas

 And a few C/Java-like features (loops,
return, etc.)

No Variable Declarations

 If you assign to a variable, it‟s mutation

 If the variable is not in scope, it is created(!)
(Do not mispeal things!!)
Scope is the current method

 Same with fields: if you assign to a field, that
object has that field
So different objects of the same class can have

different fields(!)

 Fewer keystrokes in programs, but compiler
catches fewer bugs – does it matter?

Naming Conventions

 Used to distinguish kinds of variables

Constants and ClassNames start with caps

 local_vars and parameters start w/lower case

@instance_variables

 @thing = thing sets an instance variable from a

local name – and creates @thing if it doesn‟t exist!

@@class_variables

$global $VARS $CONSTANTS

Protection?

 Fields are inaccessible outside instance

Define accessor/mutator methods as needed

 Methods are public, protected, private

protected: only callable from class or subclass

object

private: only callable from self

Both of these differ from Java (how?)

Unusual syntax
(add to this list as you discover things)

 Newlines often matter – example: don‟t need
semi-colon if a statement ends a line

 Message sends (function calls) often don‟t
need parentheses

 Infix operations are just message sends

 Can define operators including =, []

 Operators like + are just message sends

 e1 if e2 and similar things

 (as well is if e1 then e2)

Unusual syntax
(add to this list as you discover things)

 Classes don‟t need to be defined in one

place (similar to C#, not Java, C++)

 Class names must be capitalized

 “self” is Java‟s “this”

 Loops, conditionals, classes, methods are

self-bracketing (end with “end”)

Actually not unusual except to programmers

who have too much exposure to C/Java, etc.

A bit about Expressions

 Everything is an expression and produces a
value

 nil means “nothing”, but it is an object (an
instance of class NilClass)

 nil and false are false in a boolean context;
everything else is true (including 0)

 „strings‟ are taken literally (almost)

 “strings” allow more substitutions

 including #{expressions}

