
CSE 413
Programming Languages &
Implementation

Hal Perkins
Autumn 2014

Ruby: Duck Typing, Inheritance, and Modules

1

The plan…

Several related topics:
•  “Duck typing” – dynamic typing in Ruby
•  Inheritance and classes
•  Modularity and mixins

Later:
•  Multiple inheritance, interfaces, and mixins

And then:
•  Start on grammars, scanners, parsers

2

Types in Ruby

•  Ruby is dynamically typed – everything is an object
•  Only notion of an object’s “type” is what messages it

can respond to
–  i.e., whether it has methods for a particular

message
–  This can change dynamically for either all objects

of a class or for individual objects

3

Duck Typing

•  “If it walks like a duck and talks like a duck, it must be
a duck”
–  Even if it isn’t
–  All that matters is how an object behaves

•  (i.e, what messages it understands)

–  Maybe more accurate: it might as well be a duck if
you can’t tell the difference

4

Thought Experiment (1)

•  What must be true about x for this method to work?

def foo x
 x.m + x.n
end

5

Thought Experiment (2)

•  What is true about x?
 x.m + x.n

•  Less than you might think
–  x must have 0-argument methods m and n
–  The object returned by x.m must have a + method

that takes one argument
–  The object returned by x.n must have whatever

methods are needed by x.m.+ (!)

6

Duck Typing Tradeoffs

•  Plus
–  Convenient, promotes code reuse
–  All that matters is what messages an object can

receive
•  Minus

–  “Obvious” equivalences don’t hold: x+x, 2*x, x*2
–  May expose more about an object than might be

desirable (more coupling in code)
–  May allow objects to “work” in unintended /

inappropriate contexts

7

Classes & Inheritance

•  Ruby vs Java:
–  Subclassing in Ruby is not about type checking –

it is not subtyping (because of dynamic typing)
–  Subclassing in Ruby is about inheriting methods

•  Can use super to refer to inherited code
•  See examples in points.rb

–  ThreeDPoint inherits methods x and y
–  ColorPoint inherits distance methods

8

Overriding

•  With dynamic typing, inheritance alone is just
avoiding cut/paste

•  Overriding is the key difference
–  When a method in a superclass makes a self

call, it resolves to a method defined in the
subclass if there is one

–  Example: distFromOrigin2 in PolarPoint

9

Ruby – Why Subclasses?

•  Since we can add/change methods on the fly, why
use a subclass?

•  Instead of class ColorPoint, why not just add a
color field to Point?
–  Can’t do this in Java
–  Can do it in Ruby, but it changes all Point

instances (including subclasses), even existing
ones

–  Pro: now all Point classes have a color
–  Con: Maybe that breaks something else or is the

wrong abstraction for some Point clients

10

Organizing Large(r) Programs

•  Issues
–  Idea: divide code into manageable components
–  Also: want to take advantage of reusable chunks

of code (libraries, classes, etc.)
•  Strategy: Split code into separate files

–  Typically, one or more classes per file
–  Use “require” (or sometimes “load”) to access in

Ruby
–  What about components that aren’t classes?

11

Namespaces & Modules

•  Idea: Want to break larger programs into pieces
where names can be reused independently
–  Avoids clashes when combining libraries written

by different organizations or at different times
•  Ruby solution: modules

–  Separate source files that define name spaces,
but not necessarily classes

12

Example (from Programming Ruby)

module Trig
 PI = 3.14
 def Trig.sin(x)
 # …
 end
 def Trig.cos(x)
 # …
 end
end

module Moral
 VERY_BAD = 0
 BAD = 1
 def Moral.sin(badness)
 # …
 end
end

13

Using Modules

 # …
 require ‘trig’
 require ‘moral’
 y = Trig.sin(Trig::PI/4)
 penance = Moral.sin(
 Moral::VERY_BAD)
 # …

•  Key point: Each
module defines a
namespace
–  No clashes with

same names in other
modules

•  Module methods are
a lot like class
methods

14

Mixins

•  Modules can be used to add behavior to classes –
mixins
–  Define instance methods and data in module
–  “include” the module in a class – incorporates the

module definitions into the class
•  Now the class has its original behavior plus

whatever was added in the mixin
–  Provides most of the capabilities of multiple

inheritance and/or Java interfaces

15

Example

module Debug
 def trace
 # …
 end
end

class Something
 include debug
 # …
end

class SomethingElse
 include debug
 # …
 end

•  Both classes have the
trace method defined,
and it can interact with
other methods and data
in the host class as if it
was defined there
–  (trace is not “shared” by

the classes and can’t
pass information back
and forth)

16

Exploiting Mixins – Comparable

•  The real power of this is when mixins build on or
interact with code in the classes that use them

•  Example: library mixin Comparable
–  Class must define operator <=>

(a <=> b returns -1, 0, +1 if a<b, a==b, a>b)
–  Comparable mixin uses “client” <=> to define

<, <=, ==, >=, >, and between? for that class

17

Another example – Enumerable

•  Container/collection class provides an each method
to call a block for each item in the collection

•  Enumerable module builds many mapping-like
operations on top of this
–  map, include?, find_all, …
–  If items in the collection implement <=> you also

get sort, min, max, …

18

Iterator Example

•  Suppose we want to define a class of Sequence
objects that have a from, to, and step, and contain
numbers x such that
–  from <= x <= to, and
–  x = from + n*step for integer value n

(Credit: Ruby Programming Language, Flanagan & Matsumoto)

19

Sequence Class & Constructor

class Sequence
 # mixin all of the methods in Enumerable
 include Enumerable

 def initialize(from, to, step)
 @from, @to, @step = from, to, step
 end
 …

20

Sequence each method

•  To add an iterator to Sequence and make it also work
with Enumerable, all we need is this:

def each
 x = @from
 while x <= @to
 yield x
 x += @step
 end
end

21

