
CSE 413: Programming Languages
and their Implementation

Hal Perkins
Autumn 2016

CSE 413 16au - Introduction

1

Today’s Outline

•  Administrative info
•  Overview of the course
•  Introduction to Racket

»  A modern dialect of Scheme

CSE 413 16au - Introduction

2

Registration

•  Please fill out online info sheet at end of class
you’re still trying to get in
»  Need a magic word for this – will show details at

the end of the hour (remind me if I forget J)

•  We’ll see what we can do, but no promises
(depends on how many requests there are,
resources available, etc.)

CSE 413 16au - Introduction

3

Who, Where & When

•  Instructor: Hal Perkins
(perkins@cs.washington.edu)

•  Teaching Assistants: Kathryn Chan, Luke
Chang, Andrew Chronister, Yu-Tang Peng,
Soumya Vasisht

•  Office hours: Mon. 2:30-3:30, Tue-Fri 4-5;
CSE 218. Starts tomorrow.

•  Lectures: MWF 1:30-2:20, MUE 153

CSE 413 16au - Introduction

4

Course Web

•  All info is on the CSE 413 web:

http://www.cs.washington.edu/413

•  Look there for schedules, contact information,
lecture materials, assignments, links to
discussion boards and mailing lists, etc.

CSE 413 16au - Introduction

5

CSE 413 Discussion Board

•  Use the Catalyst GoPost message board to stay
in touch outside of class
»  Staff will watch and contribute too
»  General discussion of class contents
»  Hints and ideas about assignments (but no detailed

code or solutions)
»  Other topics related to the course

•  TODO: reply to the intro message and GoPost
will track unread postings for you! (Do it!!)

CSE 413 16au - Introduction

6

CSE 413 E-mail List

•  If you are registered for the course you are
automatically subscribed

•  E-mail list is used for posting important
announcements by instructor and TAs

•  You are responsible for anything sent here
»  Mail to this list is sent to your UW email address

CSE 413 16au - Introduction

7

Course Computing

•  All software is freely available and can be
installed anywhere you want
»  Links on the course web

•  Also should be available in the College of Arts
& Sciences Instructional Computing Lab
»  Let us know if there are problems

CSE 413 16au - Introduction

8

Grading: Estimated Breakdown

•  Approximate Grading:
»  Homework: 55%
»  Midterm: 15% (in class, date tba shortly)
»  Final: 25% (Mon. Dec 12, 2:30 pm)
»  Other ≤5% (citizenship, effort, …)

•  Assignments:
»  Weights will differ depending on difficulty
»  Assignments will be a mix of shorter written exercises

and shorter/longer programming projects

CSE 413 16au - Introduction

9

Deadlines & Late Policy

•  Assignments submitted online, due @11pm
»  Most due Thursday evenings, a few other nights
»  Calendar has likely schedule; might change some

•  Late policy: 4 “late days” for entire quarter
»  At most 2 on any single assignment
»  Used only in integer, 24-hour units
»  Don’t burn them up early!!

CSE 413 16au - Introduction

10

Academic (Mis-)Conduct
•  You are expected to do your own work

»  Exceptions, if any, will be clearly announced
•  Things that are academic misconduct:

»  Sharing solutions, doing work for others, accepting work from
others including have someone “walk you through” the details

»  Copying solutions found on the web
»  Consulting solutions from previous offerings of this course
»  etc. Will not attempt to provide exact legislation and invite

attempts to weasel around the rules
•  Integrity is a fundamental principle in the academic world

(and elsewhere) – we and your classmates trust you; don’t
abuse that trust

•  You must know the course policy– Read It! (on the web)

CSE 413 16au - Introduction

11

Reading

•  No required $$$ textbook
•  Good resources on the web
•  Follow “Functional Programming/Racket” link:

»  Racket documentation (Guide has language details)
»  How to Design Programs

•  Intro textbook using Scheme
»  Structure and Interpretation of Computer Programs

•  Fantastic, classic intro CS book from MIT. Some good
examples here that are directly useful

CSE 413 16au - Introduction

12

Tentative Course Schedule

•  Week 1: Functional Programming/Racket
•  Week 2: Functional Programming/Racket
•  Week 3: Functional Programming/Racket
•  Week 4: FP wrapup, environments, lazy eval
•  Weeks 5-6: Object-oriented programming and

Ruby; scripting languages
•  Weeks 7-9: Language implementation, compilers

and interpreters
•  Week 10: garbage collection; special topics

CSE 413 16au - Introduction

13

Work to do!

•  Download Racket and install

•  Run DrRacket and verify facts like 1+1=2

•  Post or reply on discussion board so it will
track unread articles for you

CSE 413 16au - Introduction

14

Now where were we?

•  Programming Languages

•  Language Implementation

CSE 413 16au - Introduction

15

Why Functional Programming?

•  Focus on “functional programming” because of
simplicity, power, elegance

•  Stretch our brains – different ways of thinking about
programming and computation
»  Often a good way to think even if stuck with C/Fortran/…

•  Now mainstream – lambdas/closures in Javascript, C#,
Java 8; f.p. idioms in C++11; functional programming
is the “secret sauce” in Google’s infrastructure; …

•  Let go of Java/C/… for now
»  Easier to approach functional prog. on its own terms
»  We’ll make connections to other languages as we go

CSE 413 16au - Introduction

16

Scheme / Racket

•  Scheme: The classic functional language
»  Enormously influential in education, research

•  Racket
»  Modern Scheme dialect with some changes/extras
»  DrRacket programming environment (was DrScheme

for many years)

•  Expect your instructor to say “Scheme” a bunch

CSE 413 16au - Introduction

17

Functional Programming

•  Programming consists of defining and evaluating
functions

•  No side effects (assignment)
»  An expression will always yield the same value when

evaluated (referential transparency)
•  No loops (use recursion instead)

•  Racket/Scheme/Lisp include assignment and
loops but they are not needed and we won’t use
»  i.e., you will “lose points”

CSE 413 16au - Introduction

18

Primitive Expressions

•  constants
»  Integer
»  rational
»  real
»  boolean

•  variable names (symbols)
»  Names can contain almost any character except

white space and parentheses
»  Stick with simple names like sumsq, x, iter, ...

CSE 413 16au - Introduction

19

Compound Expressions

•  Either a combination or a special form
•  1. Combination: (operator operand operand …)

»  there are a lot of pre-defined operators
»  We can define our own operators

•  2. Special form
»  “keywords” in the language
»  eg, define, if, cond
»  do not follow standard evaluation rules

CSE 413 16au - Introduction

20

Combinations

(operator operand operand …)

•  this is prefix notation, the operator comes first
•  a combination always denotes a procedure

application
•  the operator is a symbol or an expression, the

applied procedure is the associated value
»  +, -, abs, my-function
»  characters like * and + are not special; if they do not

stand alone then they are part of some name
CSE 413 16au - Introduction

21

Evaluating Combinations

•  To evaluate a combination
»  Evaluate the subexpressions of the combination

•  All of them, including the operator – it’s an expression
too!

»  Apply the procedure that is the value of the
leftmost subexpression (the operator) to the
arguments that are the values of the other
subexpresions (the operands)

•  Examples (demo)

CSE 413 16au - Introduction

22

Evaluating Special Forms

•  Special forms have unique evaluation rules
•  (define x 3) is an example of a special form; it is

not a combination
»  the evaluation rule for a simple define is "associate the

given name with the given value” or, more concisely,
“bind the value to the name”

»  All special forms do something different from simple
evaluation of a value from (evaluated) operands

•  There are a few more special forms, but there are
surprisingly few compared to other languages

CSE 413 16au - Introduction

23

Procedures

CSE 413 16au - Introduction

24

Recall the define special form

•  Special forms have unique evaluation rules
•  (define x 3) is an example of a special form; it

is not a combination
»  the evaluation rule for a simple define is

“associate the given name with the given value”,
i.e., “bind the value to the name”

CSE 413 16au - Introduction

25

Define and name a variable

(define 〈name〉 〈expr〉)
»  define - special form
»  name - name that the value of expr is bound to
»  expr - expression that is evaluated to give the

value for name
•  define is valid only at the top level of a

<program> and at the beginning of a <body>
»  We will only use it at top-level

CSE 413 16au - Introduction

26

Define and name a procedure

(define (〈name〉 〈formal params〉) 〈body〉)
»  define - special form
»  name - the name that the procedure is bound to
»  formal parameters - names used within the body of

procedure, bound when procedure is called
»  body - expression (or sequence of expressions)

that will be evaluated when the procedure is
called.

»  The result of the last expression in the body will
be returned as the result of the procedure call

CSE 413 16au - Introduction

27

Example definitions

(define pi 3.1415926535)

(define (area-of-disk r)
 (* pi (* r r)))

(define (area-of-ring outer inner)
 (- (area-of-disk outer)
 (area-of-disk inner)))

CSE 413 16au - Introduction

28

Defined procedures are “first class”

•  Procedures that we define are used exactly the
same way the primitive procedures provided in
Scheme are used
»  names of built-in procedures are not special; they

are simply names that have been pre-defined
»  you can't tell whether a name stands for a

primitive (built-in) procedure or one we’ve
defined by looking at the name or how it is used

»  [Disclaimer: This is not always strictly true in
Racket.]

CSE 413 16au - Introduction

29

Booleans

•  Recall that one type of data object is boolean
»  #t (true) or #f (false)

•  We can use these explicitly or by calculating
them in expressions that yield boolean values

•  An expression that yields a true or false value
is called a predicate
»  #t =>
»  (< 5 5) =>
»  (> pi 0) =>

CSE 413 16au - Introduction

30

Conditional expressions

•  As in all languages, we need to be able to
make decisions based on values

•  In Racket it’s not “if this is true, do that else do
something else”.

•  Instead, we have conditional expressions. The
value of a conditional expression is the value
of one of its subexpressions – which one
depends on the value(s) of other expression(s)

CSE 413 16au - Introduction

31

Special form: if

(if 〈e1〉 〈e2〉 〈e3〉)

Evaluation:
1.  Evaluate 〈e1〉
2.  If true, evaluate 〈e2〉 to get the if value
3.  If false, evaluate 〈e3〉 to get the if value

Example: (if (< x y) x y)

CSE 413 16au - Introduction

32

Special form: cond

(cond 〈clause1〉 〈clause2〉 ... 〈clausen〉)
•  each clause is of the form

»  (〈predicate〉 〈expression〉)

•  the last clause can be of the form

»  (else 〈expression〉)

CSE 413 16au - Introduction

33

Example: sign.scm

; return the sign of x as -1, 0, or 1

(define (sign x)
 (cond
 ((< x 0) -1)
 ((= x 0) 0)
 ((> x 0) +1)))

CSE 413 16au - Introduction

34

Logical composition

(and 〈e1〉 〈e2〉... 〈en〉)
(or 〈e1〉 〈e2〉... 〈en〉)
(not 〈e〉)

•  Scheme interprets the expressions ei one at a
time in left-to-right order until it determines
the correct value

CSE 413 16au - Introduction

35

in-range.scm

; true if val is lo <= val <= hi

(define (in-range lo val hi)
 (and (<= lo val)
 (<= val hi)))

CSE 413 16au - Introduction

36

To Be Continued…

•  For more information about Racket/Scheme,
refer to notes on the Racket pages of the
course web & reference material linked there

•  More demos/examples in the next several
lectures, very little PowerPoint, if any

CSE 413 16au - Introduction

37

