
CSE 413 19wi Homework 6

 1

Assigned: Friday, Feb. 22, 2019
Due: Wednesday, Feb. 27, 2019 by 11 pm via Gradescope

This assignment contains two short Ruby programming exercises. The first part involves simple
text manipulation and use of Ruby containers, especially hashes. The second part involves
creating a small set of classes with methods to manipulate a simulated file system consisting of
Document and Directory objects.

When you are done, you should submit the two source files containing your Ruby code using
Gradescope. You should submit the files for both parts as a single Gradescope assignment
(hw6). They will be graded independently of each other, of course.

Notes: You are free to use any or the standard Ruby language and library classes and
documentation, and you should do so. You do not need to give detailed attribution to
information found in that documentation. (There are links on the course web site’s Ruby
resources page to the main Ruby documentation sites.)

You may be able to find solutions to these or similar problems with a web search or by looking
in various Ruby repositories. Please try to refrain from doing that, since the real value of this
assignment is solving the problems and learning your way around Ruby. If you do base your
code on any online resources, be sure to credit them properly.

Part I
In a file named wordfreq.rb, write a Ruby program that has a single command-line argument
that is the name of a text file. The program should open that text file, read the words in it, and
then print out a list of all of the words found in the file and the number of times each word
appears in the file. The output should be sorted using the standard Ruby < ordering for strings.
Each word should appear at the beginning of an output line followed by a space and then
followed by the number of times the word appears in the file.

For example, suppose the input file quotes.txt contains the following:

to be or not to be
to do is to be
to be is to do
do be do be do

Then the output of the program when it reads quotes.txt should consist of the following lines:

be 6
do 5
is 2

CSE 413 19wi Homework 6

 2

not 1
or 1
to 6

You should make the following simplifying assumptions (i.e., this is meant to be a simple
exercise in text processing, not a complicated natural language processing program):

• The file contains basic alphabetic and possibly numeric (ASCII) characters. You do not
need to verify this.

• You do not need to deal with words that contain embedded punctuation like can’t or
with any other punctuation marks. You can either discard any punctuation marks
encountered or just assume that the source file does not contain any punctuation at all.

• A “word” is a sequence of characters separated by spaces or newlines.
• Words must match exactly to be considered the same. For example, word, Word, and

woRD are three different words because they consist of different combinations of lower-
and upper-case letters. Each of these should be counted separately.

Hints:

Ruby’s string split method is useful for this problem, as are Ruby hashes.

When a Ruby program is run as a script or executable program, its command line arguments
can be accessed using the variable named ARGV. To run this program and pass it the
command-line argument story.txt, the following ruby command can be used:

 > ruby wordfreq.rb story.txt

Ruby’s File class contains methods to access files, and you can iterate through (i.e., read) a
file much like any other sequence by using an appropriate method call with a block argument.

CSE 413 19wi Homework 6

 3

Part II
This section contains a sequence of three problems to create two related classes with a set of
specified methods. The code for these two classes should be contained in a Ruby source file
named classes.rb.

1. For this problem, create a Ruby class called Document that represents a simple text
document in a hypothetical file system. Each Document object should keep track of the
time it was last modified (stored as a Ruby Time object), its contents (stored as a string),
and a history of its contents (which you should implement as a Ruby array).

 Your Document class should implement the following methods:

initialize Creates an empty Document (whose contents are an empty string)
and records that it was modified at the time the method was called.

contents=
(new_contents)

Sets the Document’s contents to be equal to new_contents.

contents Returns the Document’s contents as a string.

modified Returns a Ruby Time object representing the last time this
Document was modified. Actions that modify the Document are
creating it, settings its contents, or undoing.

size Returns the size of the Document, which is equal to the number of
characters in its contents.

undo(n=1) Takes one optional parameter, n, with default value 1 and reverts
the contents of the Document to the way they appeared n versions
ago, removing the current version and any skipped-over versions
entirely from the history. If there are not n versions of history
available, returns nil and does not modify the Document.
Otherwise, returns the new contents of the Document.

Example usage:
If a document had historical versions A, B, C, D (from oldest to
newest) and current version E, calling undo(3) would revert to
version B, and then calling undo(1) would revert to version A.

CSE 413 19wi Homework 6

 4

2. Create a Ruby class called Directory that stores Documents or other Directory objects,

each specified by a name (stored as a string). You should store the children of your
Directory object using a Ruby hash.

Your Directory class should implement the following methods:

initialize Creates an empty Directory with no children.

store(name,
child)

Stores the given child object under the name name in this
Directory. If a child is already stored under that name, replaces
it. You may assume the child will be a Document or another
Directory.

get(name) Returns the Document or Directory stored under the given
name.

delete(name) Deletes the Document or Directory stored under the given
name, removing it from the Directory object. Returns the deleted
child object, or nil if there is no object by that name.

size Returns the total size of all the Documents in this Directory,
including those stored recursively in child Directory objects.

undo(n) Attempts to undo every Document stored anywhere in this
Directory by n versions, including those stored recursively in
child Directory objects. If any Document does not have enough
history to be reverted n versions, it should not be modified.

CSE 413 19wi Homework 6

 5

3. Now, add a method to your Directory class called get_by_path that builds on the

functionality of get by accepting a file path representing the location of a Document
within a Directory and recursively examining child Directory objects until reaching
that Document. A well-formed file path should be a string consisting of 0 or more
directory names and then a document name, with all components separated by forward
slashes (you may assume directory and document names will not contain forward
slashes). If the file path is malformed in any way, such as any of the components of the
path not existing or the final name referring to a Directory instead of a Document,
your method should return nil (this may require some fairly thorough error checking).

Hint: Since you will need to split the input string on forward slashes, you may find it
easiest to write a protected helper method taking an array of file path components for
recursion (protected so that instances of the same class can call it but not instances
of any other class).

For example, given the following file tree:

Directory

┣ “hw”: Directory

┃ ┗ “hw6”: Directory

┃ ┗ “hw6-solution.rkt”: Document A

┗ “notes.txt”: Document B

Then these are the results of calls to get_by_path on the top-level Directory object:

get_by_path(‘notes.txt’) => Document B
get_by_path(‘hw/hw6/hw6-solution.rkt’) => Document A

get_by_path(‘lectures/lec1.zip’) => nil
get_by_path(‘notes.txt/a.pptx’) => nil
get_by_path(‘hw’) => nil

CSE 413 19wi Homework 6

 6

Ruby Hints

 To get the current time as a Ruby Time object, you can call the now method:

 Time.now

Remember that in Ruby, defining a method called contents= allows clients to use a
convenient syntax to “set” that field, while really calling the method (and allowing the
object to run whatever code is needed to update its state appropriately):

doc = Document.new
doc.contents = ‘I do not like green eggs and ham.’
doc.contents # => ‘I do not like green eggs and ham.’

Also, when a Ruby argument is given a default value, it becomes optional and does not
need to be specified. These three calls would therefore be equivalent for undo(n=1):

doc.undo
doc.undo()
doc.undo(1)

