
1

Introduction to Data Management
CSE 414

Lecture 3: More SQL

(including most of Ch. 6.1-6.2)

1CSE 414 - Fall 2017

Overload: https://goo.gl/forms/2pFBteeXg5L7wdC12Overload: https://goo.gl/forms/2pFBteeXg5L7wdC12

Announcements

• WQ2 will be posted tomorrow and due
on Oct. 17, 11pm

• HW2 will be posted tomorrow and due
on Oct. 16, 11pm

CSE 414 - Fall 2017 2

Multi-column Keys

• This makes name a key:

CREATE TABLE Company(

name VARCHAR(20) PRIMARY KEY,

country VARCHAR(20),

employees INT,

for_profit BOOLEAN);

• How can we make a key on name & country?

CSE 414 - Fall 2017 3

Multi-column Keys

• Syntax change if a primary key has multiple columns:

CREATE TABLE Company(

name VARCHAR(20) PRIMARY KEY,

country VARCHAR(20),

employees INT,

for_profit BOOLEAN,

PRIMARY KEY (name, country));

CSE 414 - Fall 2017 4

goes away

added

Multi-column Keys (2)

• Likewise for secondary keys:

CREATE TABLE Company(

name VARCHAR(20) UNIQUE,

country VARCHAR(20),

employees INT,

for_profit BOOLEAN,

UNIQUE (name, country));

CSE 414 - Fall 2017 5

goes away

added

Multi-column Keys (3)

• This makes manufacturer a foreign key:

CREATE TABLE Product(

name VARCHAR(20),

price DECIMAL(10,2),

manufacturer VARCHAR(20)

REFERENCES Company(name));

CSE 414 - Fall 2017 6

good idea to include

target column name

2

Multi-column Keys (3)

• Similar syntax for foreign keys:

CREATE TABLE Product(

name VARCHAR(20),

price DECIMAL(10,2),

manu_name VARCHAR(20),

manu_co VARCHAR(20),

FOREIGN KEY (manu_name, manu_co)

REFERENCES Company(name, country));

CSE 414 - Fall 2017 7

now need both
name & country

added

One Way to Input Data

• Write a program that outputs SQL statements:

for (int a = 1; a <= 50; a++)

for (int b = 1; b <= 50; b++)

System.out.format(

“INSERT INTO T VALUES (%d,%d);\n“,

a, b);

• Feed those into SQLite:

sqlite3 foo.db < inputs.sql

CSE 414 - Fall 2017 8

Demo: MakeTriples.java

CSE 414 - Fall 2017 9

Warning

• Be very careful when doing this with strings:

System.out.format(

”INSERT INTO T2 VALUES (%d, ‘%s’);”,

3, ”O’Shaughnessy”);

CSE 414 - Fall 2017 10

Becomes:

INSERT INTO T2 VALUES (3, ‘O’Shaughnessy’);

which is a syntax error in this case

https://xkcd.com/327/

CSE 414 - Fall 2017 11

Warning (cont)

• Be very careful when doing this with strings:

System.out.format(

”INSERT INTO T VALUES (%d, ‘%s’);”,

3, ”O’Shaughnessy”);

• This allows a SQL injection attack!
– Must check for quotes and escape (or disallow) them.

– We’ll see safer ways to do this using JDBC

• DBMSs usually have faster ways to input data
– SQLite has .import (try with .mode csv)

CSE 414 - Fall 2017 12

3

SQLite Uses

• SQLite is just a library

• Can be used as part of any C/C++/Java program
– ex: could be used in an iPhone app

• Can be used in Chrome & Safari
– no support in Firefox or IE

CSE 414 - Fall 2017 13

Demo: websql.html in Chrome
(Note: this HTML/JS code is out of class scope)

Also selection & projection examples

(see lec03-sql-basics.sql)

CSE 414 - Fall 2017 14

Physical Data Independence

• SQL doesn’t specify how data is stored on disk

• No need to think about encodings of data types
– ex: DECIMAL(10,2)

– ex: VARCHAR(255)
• does this need to use 255 bytes to store ‘hello’?

• No need to think about how tuples are arranged
– ex: could be row- or column-major ordered

– (Most DBMSs are row-ordered, but Google’s BigQuery is
column-oriented.)

CSE 414 - Fall 2017 15

SQLite Gotchas

• Allows NULL keys
– At most one tuple can have NULL in the key

– According to the SQL standard, PRIMARY KEY should
always imply NOT NULL, but this is not the case in SQLite

• Does not support boolean or date/time columns

• Doesn’t always enforce domain constraints!
– will let you insert a string where an INT is expected

• Doesn’t enforce foreign key constraints by default

• Etc…

CSE 414 - Fall 2017 16

DISTINCT and ORDER BY

• Query results do not have to be relations
– i.e., they can have duplicate rows

– remove them using DISTINCT

• Result order is normally unspecified
– choose an order using ORDER BY

– e.g., ORDER BY country, cname

– e.g., ORDER BY price ASC, pname DESC

• Examples in lec03-sql-basics.sql

CSE 414 - Fall 2017 17

Joins

• Can use data from multiple tables:

SELECT pname, price

FROM Product, Company

WHERE manufacturer = cname AND

country = ‘Japan’ AND

price < 150;

• This is a selection and projection of the “join” of the
Product and Company relations.

CSE 414 - Fall 2017 18

4

Interpreting Joins

• A JOIN B produces one row for every pair of rows
– one row from A and one row from B

(‘Canon’, ‘Japan’, ‘SingleTouch’, 149.99, ‘Canon’)

CSE 414 - Fall 2017 19

Cname Country

Canon Japan

GizmoWorks USA

Pname Price Manufacturer

SingleTouch 149.99 Canon

Gizmo 19.99 GizmoWorks

PowerGizmo 29.99 GizmoWorks

Interpreting Joins

• A JOIN B produces one row for every pair of rows
– one row from A and one row from B

(‘Canon’, ‘Japan’, ‘Gizmo’, 19.99, ‘GizmoWorks’)

CSE 414 - Fall 2017 20

Cname Country

Canon Japan

GizmoWorks USA

Pname Price Manufacturer

SingleTouch 149.99 Canon

Gizmo 19.99 GizmoWorks

PowerGizmo 29.99 GizmoWorks

Interpreting Joins

• A JOIN B produces one row for every pair of rows
– one row from A and one row from B

(‘Canon’, ‘Japan’, ‘PowerGizmo’, 29.99, ‘GizmoWorks’)

CSE 414 - Fall 2017 21

Cname Country

Canon Japan

GizmoWorks USA

Pname Price Manufacturer

SingleTouch 149.99 Canon

Gizmo 19.99 GizmoWorks

PowerGizmo 29.99 GizmoWorks

Interpreting Joins

• A JOIN B produces one row for every pair of rows
– one row from A and one row from B

(‘GizmoWorks’, ‘USA’, ‘SingleTouch’, 149.99, ‘Canon’)

CSE 414 - Fall 2017 22

Cname Country

Canon Japan

GizmoWorks USA

Pname Price Manufacturer

SingleTouch 149.99 Canon

Gizmo 19.99 GizmoWorks

PowerGizmo 29.99 GizmoWorks

Interpreting Joins

• A JOIN B produces one row for every pair of rows
– one row from A and one row from B

(‘GizmoWorks’, ‘USA’, ‘Gizmo’, 19.99, ‘GizmoWorks’)

CSE 414 - Fall 2017 23

Cname Country

Canon Japan

GizmoWorks USA

Pname Price Manufacturer

SingleTouch 149.99 Canon

Gizmo 19.99 GizmoWorks

PowerGizmo 29.99 GizmoWorks

Interpreting Joins

• A JOIN B produces one row for every pair of rows
– one row from A and one row from B

(‘GizmoWorks’, ‘USA’, ‘PowerGizmo’, 29.99, ‘GizmoWorks’)

CSE 414 - Fall 2017 24

Cname Country

Canon Japan

GizmoWorks USA

Pname Price Manufacturer

SingleTouch 149.99 Canon

Gizmo 19.99 GizmoWorks

PowerGizmo 29.99 GizmoWorks

5

Interpreting Joins
• A JOIN B produces one row for every pair of rows

– one row from A and one row from B

• This join produces 6 different rows
– in general, # rows in join is (# rows in A) * (# rows in B)

– number of rows often much smaller after selection…

– DBMS will do everything in its power to not compute A JOIN B

CSE 414 - Fall 2017 25

Cname Country

Canon Japan

GizmoWorks USA

Pname Price Manufacturer

SingleTouch 149.99 Canon

Gizmo 19.99 GizmoWorks

PowerGizmo 29.99 GizmoWorks

JOIN

Interpreting Joins (2)

• Can think of a join in terms of code:

for every row C in Company {

for every row P in Product {

if (P.manufacturer = C.cname and

C.country = ‘Japan’ and

P.price < 150.00)

output (C.cname, C.country,

P.pname, P.price, P.category,

P.manufacturer);

}

}
CSE 414 - Fall 2017 26

Types of Joins

• We usually think of the selection as part of the join
– e.g., manufacturer = cname and country = ‘Japan’ and …

– called the “join predicate”

• Join without a predicate is cross product / cross join

• Special names depending on predicate
– natural join if “=“ between pairs of columns with same name

– with well chosen col names, many joins become natural

• These are “inner” joins. We will discuss outer later…

CSE 414 - Fall 2017 27

Join Examples

• See lec03-sql-basics.sql…

CSE 414 - Fall 2017 28

