Database Systems
CSE 414

Lecture 6: Nested Queries in SQL

CSE 414 - Fall 2017

Announcements
« HW1 is due today 11pm

« WQ1 is due tomorrow 11pm
— no late days

 WQ3 is posted and due on Oct. 19, 11pm

CSE 414 - Fall 2017

Lecture Goals

« Today we will learn how to write (even) more
powerful SQL queries

 Reading: Ch. 6.3

CSE 414 - Fall 2017

Subqueries

« A subquery is a SQL query nested inside a larger query
— such inner-outer queries are called nested queries

* A subquery may occur in:
— A SELECT clause
— A FROM clause
— A WHERE clause

* Rule of thumb: avoid nested queries when possible;
keep in mind that sometimes it's impossible
— (though use in FROM is often not as bad)

CSE 414 - Fall 2017 4

Subqueries...

Can return a single constant and this constant can be
compared with another value in a WHERE clause

Can return relations that can be used in various ways
iIn WHERE clauses

Can appear in FROM clauses, followed by a tuple
variable that represents the tuples in the result of the
subquery

Can appear as computed values in a SELECT clause

CSE 414 - Fall 2017)

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product, return the city where it is manufactured

SELECT X.pname, (SELECT Y.city

FROM Company Y

WHERE Y.cid=X.cid) as City
FROM Product X

What happens if the subquery returns more than one city ?

We get a runtime error
(SQLite simply ignores the extra values)

CSE 414 - Fall 2017 6

1. Subqueries in SELECT

Product (pname, price, cid)

Company(cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city

FROM Product X

WHERE Y.cid=X.cid) fas City

“correlated
subquery”

What happens if the subquery returns more than one city ?

We get a runtime error
(SQLite simply ignores the extra values)

CSE 414 - Fall 2017

Product (pname, price, cid)
Company(cid, cname, city)

1. Subqueries in SELECT

Whenever possible, don’t use nested queries:

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

DBMS also
I I does this...

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

FROM Product X

We have
“‘unnested”
the query

CSE 414 - Fall 2017

Product (pname, price, cid)
Company(cid, cname, city)

1. Subqueries in SELECT

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

_ SELECT C.cname, count(*)
Better: we Ca_n FROM Company C, Product P
unnest by using | WHERE C.cid=P.cid

a GROUP BY GROUP BY C.cname

CSE 414 - Fall 2017 9

Product (pname, price, cid)
Company(cid, cname, city)

1. Subqueries in SELECT

But are these really equivalent?

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

SELECT C.cname, count(*)
FROM Company C, Product P No! Different results if a

GROUP BY C.cname

SELECT C.cname, count(pname)

FROM Company C LEFT OUTER JOIN Product P
ON C.cid=P.cid

GROUP BY C.cname

CSE 414 - Fall 2017

WHERE C.cid=P.cid company has no products

10

Product (pname, price, cid)
Company(cid, cname, city)

2. Subqueries in FROM

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT * FROM Product AS Y WHERE price > 20) as X
WHERE X.price < 500

Unnest this query !

SELECT pname
FROM Product
WHERE price > 20 AND price < 500

CSE 414 - Fall 2017

11

2. Subqueries in FROM

We will see that sometimes we really need a
subquery

— will see most compelling examples next lecture
— in that case, we can put it in the FROM clause

CSE 414 - Fall 2017 12

Product (pname, price, cid)
Company(cid, cname, city)

3. Subqueries in WHERE

Find all companies that make some products with price < 100

[Existential quantifiers}

Using EXISTS:

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *
FROM Product P
WHERE C.cid = P.cid and P.price < 100)

CSE 414 - Fall 2017 13

Product (pname, price, cid)
Company(cid, cname, city)

3. Subqueries in WHERE

Find all companies that make some products with price < 100

[Existential quantifiers}

Using IN

SELECT DISTINCT C.cname

FROM Company C

WHERE C.cid IN (SELECT P.cid
FROM Product P
WHERE P.price < 100)

CSE 414 - Fall 2017 14

Product (pname, price, cid)
Company(cid, cname, city)

3. Subqueries in WHERE

Find all companies that make some products with price < 100

[Existential quantifiers}

Using ANY:
SELECT DISTINCT C.cname
FROM Company C | Not supported
WHERE 100 > ANY (SELECT price . it
FROM Product P In sqiite

WHERE P.cid = C.cid)

CSE 414 - Fall 2017 15

Product (pname, price, cid)
Company(cid, cname, city)

3. Subqueries in WHERE

Find all companies that make some products with price < 100

[Existential quantifiers}

[Now let's unnest it:]

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 100

Existential quantifiers are easy ! ©

CSE 414 - Fall 2017 16

Product (pname, price, cid)
Company(cid, cname, city)

3. Subqueries in WHERE

Find all companies where all their products have price < 100

Same as.

Find all companies that make only products with price < 100

{Universal quantifiers]

Universal quantifiers are hard ! ®

CSE 414 - Fall 2017 17

Product (pname, price, cid)
Company(cid, cname, city)

3. Subqueries in WHERE

Find all companies where all their products have price < 100

1. Find the other companies with some product having price = 100

SELECT DISTINCT C.cname

FROM Company C

WHERE C.cid IN (SELECT P.cid
FROM Product P
WHERE P.price >= 100)

2. Find all companies where all their products have price < 100

SELECT DISTINCT C.cname

FROM Company C

WHERE C.cid NOT IN (SELECT P.cid
FROM Product P

WHERE P.price >= 100) 5

Product (pname, price, cid)
Company(cid, cname, city)

3. Subqueries in WHERE

Find all companies where all their products have price < 100

[Universal quantifiers]

Using EXISTS:

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *
FROM Product P
WHERE P.cid = C.cid and P.price >= 100)

CSE 414 - Fall 2017 19

Product (pname, price, cid)
Company(cid, cname, city)

3. Subqueries in WHERE

Find all companies where all their products have price < 100

{Universal quantifiers]

Using ALL:
SELECT DISTINCT C.cname
FROM Company C | Not supported
WHERE 100 >= ALL (SELECT price . it
FROM Product P In sqiite

WHERE P.cid = C.cid)

CSE 414 - Fall 2017 20

Question for Database Fans
and their Friends

« Can we unnest the universal gquantifier query ?
— No

CSE 414 - Fall 2017 21

Product (pname, price, cid)
Company(cid, cname, city)

Monotone Queries

« Definition: A query Q is monotone if:

— Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

Product Company

pname | price cid cid cname city Q A B
Gizmo 19.99 | c001 c002 Sunworks | Bonn Gizmo Lyon
Gadget | 999.99 | c004 c001 DB Inc. Lyon > Camera | Lodtz
Camera | 149.99 | c003 c003 Builder Lodtz

Product Company

pname | price | cid cid cname city Q A B
Gizmo | 19.99 | c001 c002 Sunworks | Bonn > Gizmo | Lyon
Gadget | 999.99 | c004 c001 DB Inc. Lyon Camera | Lodtz
Camera | 149.99 | c003 c003 Builder Lodtz iPad Lyon
Pad | 499.99 | c00f CSE 414 - Fall 2017 22

Monotone Queries

« Theorem: If Qis a SELECT-FROM-WHERE query
that does not have subqueries, and no aggregates,
then it is monotone.

* Proof. We use the nested loop semantics: if we
insert a tuple in a relation R, this will not remove any
tuples from the answer

SELECT a,, a,, ..., a, for);(1)".':(Ri1ndl'\? do
FROM R;AS x4, R,AS x,, ..., R, AS X, 2 2
WHERE Conditons | | e

for x,in R, do
if Conditions
output (a,,...,a,)

CSE 414 - Fall 2017 23

Product (pname, price, cid)
Company(cid, cname, city)

Monotone Queries
 The query:

Find all companies where all their products have price < 100

IS not monotone

pname | price cid cid cname city cname
Gizmo 19.99 c001 c001 Sunworks | Bonn > Sunworks
pname | price cid cid cname city cname
Gizmo 19.99 c001 c001 Sunworks | Bonn >

Gadget | 999.99 | c001

« Consequence: we cannot write it as a SELECT-
FROM-WHERE query without nested subqueries

CSE 414 - Fall 2017 24

Queries that must be nested

(that is, cannot be SFW queries)

* Queries with universal quantifiers or negation

* Queries that use aggregates in usual ways
are not monotone

— Note: sum(..) etc. are NOT monotone
— select count(*) from R is not monotone!

CSE 414 - Fall 2017 25

