Database Systems
CSE 414

Lecture 9-10: Datalog
(Ch 5.3-5.4)

CSE 414 - Spring 2017

Announcements

*« HW2 is due today 11pm
* WQ2 is due tomorrow 11pm
* WQ3 is due Thursday 11pm

* HW4 is posted and due on Nov. 9, 11pm

CSE 414 - Spring 2017 2

What is Datalog?

» Another query language for relational model
— Simple and elegant
— Initially designed for recursive queries
— Some companies use Datalog for data analytics
« e.g. LogicBlox
— Increased interest due to recursive analytics

» We discuss only recursion-free or non-
recursive Datalog and add negation

CSE 414 - Spring 2017

Datalog

» See book: 5.3-54

» See also: Query Language primer
— article by Dan Suciu
— covers relational calculus as well

CSE 414 - Spring 2017 4

Why Do We Learn Datalog?

+ Datalog can be translated to SQL
— Helps to express complex queries...

CSE 414 - Spring 2017

USE Advesturesorts J00IRT;

)
WITH BirectReparts (ManagerlD, EsployeelD, Title, Deptld, Lewel)
a5

DirectReports(eid, 0) :-
Employee(eid),
not Manages(_, eid)
DirectReports(eid, level+1) -
DirectReports(mid, level),
Manages(mid, eid)

SQL Query vs. Datalog
(which one would you rather write?)
CSE 414 - Spring 2017 6




Why Do We Learn Datalog?

+ Datalog can be translated to SQL
— Helps to express complex queries

* Increase in Datalog interest due to recursive analytics

* A query language that is closest to mathematical logic
— Good language to reason about query properties
— Can show that:
1. Non-recursive Datalog & RA have equivalent power
2. Recursive Datalog is strictly more powerful than RA
3. Extended RA & SQL92 is strictly more powerful than Datalog

CSE 414 - Spring 2017 7

Some History

Actually... relational
DBMSs still dominate
e SYSTEMS,

Early database history:
* 60s: network data models

* 70s: relational DBMSs ,i(.
+ 80s: OO-DBMSs i,f'//?—f

Ullman (1988) predicts KBMSs will
replace DBMSs as they replaced what
came before

« KBMS: knowledge-base
* combines data & logic (inferences)

CSE 414 - Spring 2017 8

Datalog

We won't run Datalog in 414. Try out on you own:
» Download DLV (http:/www.dlvsystem.com/div/)
‘parent(william, john).

* Run DLV on this file
» Can also try IRIS Breniomes iy

parent(sue, bil).
parent(james, carol).
parent(sue, carol)

male(john).

male
female(carol).

grandparent(X, Y) - parent(X, Z), parent(Z, Y).
father(X, Y) :- parent(X, Y), male(X)

mother(X, Y) :- parent(X, Y), female(X).

brother(X, Y) :- parent(P, X), parent(P, Y), male(X), X 1= Y.
sister(X, Y) - parent(P, X), parent(P, Y), female(X), X 1= Y.

CSE 414 - Spring 2017 9

Actor(pid, fname, Iname)
Casts(pid, mid)
Movie(mid, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759, ‘Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

[Q1(y) - Movie(x, y, 1940). |

Find Movies made in 1940

CSE 414 - Spring 2017 10

Actor(pid, fname, Iname)
Casts(pid, mid)
Movie(mid, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759, ‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).

[Q1(y) - Movie(x, y, 1940). |

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).

Q2(f, I) :- Actor(z, f, 1), Casts(z, x),
Movie(x, y, 1940).

Movie(29445, ‘Ave Maria’, 1940).

Find Actors who acted in Movies made in 1940 ‘

CSE 414 - Spring 2017 1

Actor(pid, fname, Iname)
Casts(pid, mid)
Movie(mid, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759, ‘Douglas’, ‘Fowley’).
Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

[Q1(y) - Movie(x, y, 1940). |

Q2(f, 1) :- Actor(z, f, 1), Casts(z, x),
Movie(x, y, 1940).

Q3(f, 1) - Actor(z, f, 1), Casts(z, x1), Movie(x1, y1, 1910),
Casts(z, x2), Movie(x2, y2, 1940)

Find Actors who acted in a Movie in 1940 and in one in 1910 |

CSE 414 - Spring 2017 12




Actor(pid, fname, Iname)
Casts(pid, mid)
Movie(mid, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759, ‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).

[Q1(y) - Movie(x, y, 1940). |

Movie(7909, ‘A Night in Armour’, 1910). ‘QZ(f, l):- Actor(z, f, 1), Casts(z, x),
Movie(29000, ‘Arizona’, 1940). Movie(x, y, 1940).

Movie(29445, ‘Ave Maria’, 1940).

Q3(f, I) :- Actor(z, f, 1), Casts(z, x1), Movie(x1, y1, 1910),
Casts(z, x2), Movie(x2, y2, 1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie

Intensional Database Predicates = IDB = Q1, Q2, Q3
CSE 414 - Spring 2017 13

Datalog: Terminology

head body

S

\
atom (a.k.a. subgoal)

atom atom

Q2(f, 1) - Actor(z, f, ), Casts(z, x), Movie(x, y, 1940).

f,l = head variables
X, ¥, z = existential variables

More Datalog Terminology

lQ(args) - R1(args), R2(args), .... | Book writes:

Q(args) :- R1(args) AND R2(args) AND ...

* R(args;) is called an atom, or a relational predicate

* Ri(args;) evaluates to true when relation R; contains
the tuple described by args;.
— Example: Actor(344759, ‘Douglas’, ‘Fowley’) is true

 In addition to relational predicates, we can also have
arithmetic predicates
— Example: z=1940.

CSE 414 - Spring 2017 15

CSE 414 - Spring 2017 14
Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)
Semantics

* Meaning of a Datalog rule = a logical statement !

[Q1(y) :- Movie(x, y, z), z=1940. |

* Means:
— VX. Vy. Vz. [(Movie(x, y, z) and z=1940) = Q1(y)]
— and Q1 is the smallest relation that has this property

« Note: logically equivalent to:
— V. [(3x. 3z. Movie(x, y, z) and z=1940) = Q1(y)]
— That's why vars not in head are called "existential variables".

CSE 414 - Spring 2017 16

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog program

A Datalog program is a collection of one or more rules

Each rule expresses the idea that, from certain combinations
of tuples in certain relations, we may infer that some other
tuple must be in some other relation or in the query answer
Example: Find all actors with Bacon number < 2

BO(x) :- Actor(x, 'Kevin', 'Bacon')

B1(x) :- Actor(x, f, I), Casts(x, z), Casts(y, z), BO(y
B2(x) :- Actor(x, f, ), Casts(x, z), Casts(y, z), B1(y
Q4(x) :- BO(x)

Q4(x) :- B1(x)

Q4(x) :- B2(x)

Note: Q4 means the union of BO, B1, & B2 "

Recursive Datalog

« In Datalog, rules can be recursive

Path(x, y) :- Edge(x, y).
Path(x, y) :- Path(x, z), Edge (z, y).

» We’'ll focus on non-recursive Datalog

(s)
o ° Edge encodes a graph
J ) Path finds all paths

CSE 414 - Spring 2017 18




Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog with negation

Find all actors who do not have a Bacon number < 2

BO(x) :- Actor(x, 'Kevin', 'Bacon')
B1(x) :- Actor(x, f, 1), Casts(x, z), Casts(y, z), BO(y)
Q6(x) :- Actor(x, f, ), not B1(x), not BO(x)

CSE 414 - Spring 2017

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Safe Datalog Rules

Here are unsafe Datalog rules. What's “unsafe” about them ?

[U1(x, y) - Movie(x, z, 1994), y>1910 |

[U2(x) - Movie(x, z, 1994), not Casts(u, x) |

A Datalog rule is safe if every variable appears
in some positive relational atom

Datalog vs. Relational Algebra

« Every expression in standard relational algebra can
be expressed as a Datalog query

+ But operations in the extended relational algebra
(grouping, aggregation, and sorting) have no
corresponding features in the version of Datalog that
we discussed today

Similarly, Datalog can express recursion, which
relational algebra cannot

CSE 414 - Spring 2017 21

RA to Datalog by Examples

Schema for our examples:

R(A, B, C)
S(D, E, F)
T(G, H)

CSE 414 - Spring 2017 23

Datalog vs. Relational Algebra

grouping &
aggregation

standard RA

Datalog +
neg

Datalog + neg
+ recursion

CSE 414 - Spring 2017 22

RA to Datalog by Examples
Union R(A, B, C) U S(D, E, F)

Ux, vy, z) - R(x, y, 2)
Ux,y, z):- S(x, Y, )

CSE 414 - Spring 2017 24




RA to Datalog by Examples
Intersection R(A, B, C) N S(D, E, F)

I(x, ¥, z) - R(X, ¥, 2), S(X, Y, 2)

CSE 414 - Spring 2017 25

RA to Datalog by Examples

Selection: Ox>100 and y=‘some string’ (R)
L(x,y, z) - R(x, y, z), x > 100, y="some string’

Selection: x>100 or y=‘some string’

L(x, Y, z) - R(x, y, z), x> 100
L(x, y, ) - R(X, ¥, Z), y="some string’

CSE 414 - Spring 2017 26

RA to Datalog by Examples
Equi-join: R DR p=s.p and RB=s.E S
J(X, ¥, z, u, v, w) :- R(X, ¥, Z), S(u, v, W), X=u, y=v

Jx, ¥, z, W) - R(x, ¥, Z), S(X, y, W)

CSE 414 - Spring 2017 27

RA to Datalog by Examples
Projection m,(R)

P(x) :- R(x, y, 2)

RA to Datalog by Examples

To express set difference R — S,
we add negation

D(x, Y, z) :- R(x, y, z), not S(x, y, z)

CSE 414 - Spring 2017 29

CSE 414 - Spring 2017 28
Examples
R(A, B, C)
S(D, E, F)
T(G, H)

Translate: IT,(cg-3 (R) )
B(a, b, ¢) - R(a, b, c), b=3
A(a) - B(a, b, ¢)

CSE 414 - Spring 2017 30




Examples

R(A, B, C)
S(D, E, F)
T(G, H)

Translate: I1,(og-3 (R) )

A(a):-R(a, 3, )
Underscore used to denote an "anonymous variable”,
a variable that appears only once.

CSE 414 - Spring 2017 31

Examples
R(A, B, C)
S(D, E, F)
T(G, H)

Translate: I1,(cg-3 (R) g a=s.p Oe=5 (S) )
A(a) -R(a, 3, ), S(a, 5, _)

CSE 414 - Spring 2017 32

Friend(name1, name2)
Enemy(name1, name2)

More Examples

Find Joe's friends, and friends of Joe's friends.

A(x) :- Friend('Joe', x)
A(x) :- Friend('Joe', z), Friend(z, x)

CSE 414 - Spring 2017 33

Friend(name1, name2)
Enemy(name1, name2)

More Examples

Find all of Joe's friends who do not have any
friends except for Joe:

- NonAns(x): all people (of Joe's friends) who
have some friends who are not Joe

JoeFriends(x) :- Friend('Joe', x)
NonAns(x) :- Friend(y, x), y != ‘Joe’
A(x) :- JoeFriends(x), not NonAns(x)

CSE 414 - Spring 2017 34

Friend(name1, name2)
Enemy(name1, name2)

More Examples

Find all people such that all their enemies’
enemies are their friends

- NonAns(x): all people such that some of their
enemies' enemies are not their friends

NonAns(x) :- Enemy(x, y), Enemy(y, z), not Friend(x, z)
A(x) :- Everyone(x), not NonAns(x)

Everyone(x)
Everyone(x)

:- Friend(x, y)
:- Friend(y, x)
Everyone(x) :-
Everyone(x) :-

Enemy(x, y)
Enemy(y, x)

CSE 414 - Spring 2017

35

Friend(name1, name2)
Enemy(name1, name2)

More Examples
Find all people x who have only friends all of whose
enemies are X's enemies.
- NonAns(x): all people x who have some friends some
of whose enemies are not x's enemies

what's wrong with this?

NonAns(x) :- Friend(x, y), Enemy(y, z), not Enemy(x, z)
A(x) :- not NonAns(x)

NonAns(x) :- Friend(x, y), Enemy(y, z), not Enemy(x, z)
A(x) :- Everyone(x), not NonAns(x)

CSE 414 - Spring 2017 36




Datalog Summary

« facts (extensional relations) and
rules (intensional relations)

— rules can use relations, arithmetic, union, intersect, ...

« As with SQL, existential quantifiers are easier
— use negation to handle universal

» Everything expressible in RA is expressible in
non-recursive Datalog and vice versa
— recursive Datalog can express more than (extended) RA
— extended RA can express more than recursive Datalog

CSE 414 - Spring 2017

37




