Database Systems
CSE 414

Lecture 15-16:
Basics of Data Storage and Indexes

(Ch. 8.3-4, 14.1-1.7, & skim 14.2-3)

CSE 414 - Fall 2017 1

10/29/2017

Announcements
* Midterm on Monday, November 6th, in class
— Allow 1 page of notes (both sides, 8+pt font)

* WQ4 is due Friday 11pm

* Prof. Gang Luo will be out of town Nov. 3-8
— No office hour on Nov. 8
— TAs will handle the midterm in class

— Prof. Magdalena Balazinska will teach the lecture
this Friday (Nov. 3)

— Prof. Dan Suciu will teach the lecture next
Wednesday (Nov. 8)

CSE 414 - Fall 2017 2

Midterm
Content
— Lectures 1 through 17 (today - Friday)
— HW 1-5, WQ 1-4

Closed book. No computers, phones, watches, etc.!

Can bring one letter-sized piece of paper with notes, but...
— test will not be about memorization
— formulas provided for join algorithms & selectivity

Similar in format & content to CSE 414 17sp midterm
— CSE 344 tests include some things we did not cover

Motivation

* To understand performance, need to
understand a bit about how a DBMS works
— my database application is too slow... why?
— one of the queries is very slow... why?

Understanding query optimization

— we have seen SQL query ~> logical plan (RA),
but not much about RA ~> physical plan

* Choice of indexes is often up to you

CSE 414 - Fall 2017 4

Student

ID |fName | IName

i

0 | Tom Hanks

Data Storage

20 | Amy Hanks

* DBMSs store data in files

* Most common organization is row-wise storage:

— File is split into blocks 10| Tom Hanks block 1
. 20 Al Hank:
— Each block contains = = =i
a set of tuples o block 2
+ DBMS reads entire block [z block 3
240
420
800
In the example, we have 4 blocks with 2 tuples each
CSE 414 - Fall 2017 5

Student

ID | fName | IName

=

0 | Tom Hanks

Data File Types

20 | Amy Hanks

The data file can be one of:
* Heap file

— Unsorted
» Sequential file

— Sorted according to some attribute(s) called key

Note: key here means something different from primary key:
it just means that we order the file according to that attribute.
In our example, we ordered by ID. Might as well order by fName,
if that seems a better idea for the applications using our DB.

CSE 414 - Fall 2017 6

10/29/2017

Index

» An additional file, that allows fast access to
records in the data file given a search key

» The index contains (key, value) pairs:
— The key = an attribute value (e.g., student ID or name)
— The value = a pointer to the record

» Could have many indexes for one table

[Key = means here search key}

This Is Not A Key

Different keys:

+ Primary key — uniquely identifies a tuple

+ Key of the sequential file — how the data file is
sorted, if at all

* Index key — how the index is organized

| Ve

This 4a o @ prife

CSE 414 - Fall 2017

CSE 414 - Fall 2017 7
Student
Example 1 ID |fName | IName
10 | Tom Hanks
Indexon ID [[amy [Henis
Index on Student.ID Data File Student| ..
=
~
m -1 —]10 |Tom Hanks
20 -1 |20 Amy Hanks
50 I e)
200 I N Y
220 00
240 220
20 240
800
420
950
800
CSE 414 - Fall 2017 9

Student
. ID | fName | IName
Example 2:
10 | Tom Hanks
|ndeX On fName 20 | Amy Hanks
Index on Student.fName Data File Student| ...
. =
pvovn 10 | Tom Hanks
A 20 | Amy Hanks
Bob Y 50
Cho
. 200 | ...
220
240
420
800
Tom
CSE 414 - Fall 2017 10

Index Organization

Several index organizations:

* B+ trees — most popular

— They are search trees, but they are not binary
instead have higher fan-out

» Hash table

» Specialized indexes: bit maps, R-trees,
inverted index

CSE 414 - Fall 2017 1

(Each level is a fraction of the size of the one below)

Recap: B+ Tree

Level 3 Level 3 How to find IDs in Level 2

m--- Level 2 How to find IDs in Level 1
Level 1 How to find IDs in data file
Level 2
20 | 60 100 | 120 | 140
Leve\/ \

[10]15]re]] [20]s0]40]50][eoJes] T | [eo]es]e0]]
ENNEENINENE SN
S TN N
[eo][15]Tes] [eo] [18][s0][s0[[es[[20][e0][10][a0]
CSE 414 - Fall 2017 12

A (naive) hash function:

|h(x) = x mod 10

[J = disk block

Cost per lookup:
* one access in array
* one access in list

Hash Index

o=

Jd—

N -

3|[_J}—>fs03] [103] 03[[]
N

5 E—

6 {76 [[es6] | J
7]

S8 J—les [|
of] X

CSE 414 LFafF 2647 13

No range queries!

10/29/2017

Clustered vs. Unclustered

Data entrles

- - Dataentries |/
(Index Fnlev

Tt é“m D/Dﬁm

Data Records Data Records

CLUSTERED UNCLUSTERED

[Every table can have only one clustered and many unclustered indexes J

[SQL Server defaults to cluster by primary key]

CSE 414 - Fall 2017 14

Index Classification

Clustered/unclustered

— Clustered = records close in index are close in data

+ Option 1: Data inside data file is sorted on disk

+ Option 2: Store data directly inside the index (no separate files)
— Unclustered = records close in index may be far in data

* Primary/secondary

— Meaning 1:
* Primary =

« Secondary = otherwise
— Meaning 2: means the same as clustered/unclustered

« Organization: B+ tree or Hash table

is over attributes that include the primary key

CSE 414 - Fall 2017

Scanning a Data File

Hard disks are mechanical devices!
— Technology from the 60s; density much higher now

We read only at the rotation speed!

Consequence: sequential scan is MUCH FASTER than
random reads

— Good: read blocks 1, 2, 3, 4, 5,...

— Bad: read blocks 2342, 11, 321, 9, ...
Rule of thumb:

— Random reading 1-2% of the file =
sequential scanning the entire file

— this is decreasing over time (because of increased density of disks)

CSE 414 - Fall 2017 16

HDD ~> SSD

» Solid state (SSD): used to be too expensive...

— entirely different performance characteristics!

Seagate Technelogy PLC STX

ok

not any more

wam

T

i

CSE 414 - Fall 2017

Takes(studentID, courselD)
Student(ID, name, ...)

Example

fory in Takes
if courselD = 300 then
for x in Student
if x.ID=y.studentID
output *

SELECT name
FROM Student x, Takes y
WHERE x.ID = y.studentID AND y.courselD = 300

Assume the database has indexes on these attributes:
« index_takes_course = index on Takes.courselD
« index_studentID = index on Student.ID

Index selection

Cnderion 7~ |

for y1in index_takes_course where y1.courselD = 300
fory in yl.Takes
for x1 in index_studentID where x.ID = y.studentID
for x in x1.Student
output x.*, y.*

CSE 414 - Fall 2017 18

Getting Practical:
Creating Indexes in SQL

[CREATE TABLE V(Mint, Nvarchar(20), P int);

| CREATE INDEX V1 ON V(N) |

T
| CREATE INDEX V2 ON V(P, M) Whatdoesithisimean

| CREATE INDEX V3 ON V(M, N) |

[CREATE UNIQUE INDEX V4 ON V(N) |

Not supported
\ CREATE CLUSTERED INDEX V5 ON V(N) | ol

CSE 414 - Fall 2017 19

10/29/2017

Student

ID | fName IName

Which Indexes?

=

0 | Tom Hanks

20 | Amy Hanks

* How many indexes could we create?

‘ 15, namely: (ID), (fName), (IName), (ID,fName), (fName,ID), ...

* Which indexes should we create?

‘ Few! Each new index slows down updates to Student ‘

‘ Index selection is a hard problem ‘

CSE 414 - Fall 2017 20

Student

ID |fName | IName

Which Indexes?

i

0 | Tom Hanks

20 | Amy Hanks

* The index selection problem

— given a table, and a “workload” (big Java
application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

&
* Who does index selection: @@
— database administrator DBA -

— semi-automatically, using a database
administration tool

CSE 414 - Fall 2017 21

Index Selection: Which Search Key

+ Make some attribute K a search key if the
WHERE clause contains:
— an exact match on K
— arange predicate on K
—ajoinon K

CSE 414 - Fall 2017 22

Index Selection Problem

V(M, N, P); Suppose the database
Ecan Vh | has the index 11 below.
or each record: A A
if M=33 then output Discuss physical qu,ery
SELECT * plans for these queries.
WHERE V.M = 33 | For each record: output INDEX 11 on V(M)
Scan V
SELECT * For each record:
FROM V if M=33 and P=55 then output

WHERE V.M =33 and V.P = 55

Lookup key 33 in 11
For each record
if P=55 then output

CSE 414 - Fall 2017 23

Index Selection Problem 1

V(M, N, P);

Your workload is this (and nothing else)

100,000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=? WHERE P=?

Which indexes ?

CSE 414 - Fall 2017 24

Index Selection Problem 1
V(M, N, P);

Your workload is this (and nothing else)
100,000 queries:

100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=? WHERE P=?

|A: V(N)and V(P) (hash tables or B-trees) |

CSE 414 - Fall 2017

25

Index Selection Problem 2
V(M, N, P);

Your workload is this
100,000 queries:

100 queries: 100,000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?,7?,?)
WHERE N>? and N<? | | WHERE P=?

{A: definitely V(N) (must B-tree); unsure about V(P) }

CSE 414 - Fall 2017 27

10/29/2017

Index Selection Problem 2
V(M, N, P);

Your workload is this

100,000 queries: 100 queries: 100,000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?,?,7?)
WHERE N>? and N<? | | WHERE P=?

Which indexes ?

CSE 414 - Fall 2017

26

Index Selection Problem 3

V(M, N, P);

Your workload is this

100,000 queries: 1,000,000 queries: 100,000 queries:

SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (2, 2, ?)
WHERE N=? WHERE N=? and P>?

Which indexes ?

CSE 414 - Fall 2017

28

Index Selection Problem 3
V(M, N, P);

Your workload is this

100,000 queries: 1,000,000 queries: 100,000 queries:

SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?,?,7?)
WHERE N=? WHERE N=? and P>?

[A: V(N, P) (B-tree)} How does this index differ from:

1. Two indexes V(N) and V(P)?
2. Anindex V(P, N)?

CSE 414 - Fall 2017 29

Index Selection Problem 4
V(M, N, P);

Your workload is this

1,000 queries: 100,000 queries:

SELECT * SELECT *
FROM V FROM V
WHERE N>? and N<? WHERE P>? and P<?

Which indexes ?

CSE 414 - Fall 2017 30

Index Selection Problem 4

V(M, N, P);

Your workload is this

1,000 queries: 100,000 queries:
SELECT * SELECT *
FROM V FROM V

WHERE N>? and N<? WHERE P>? and P<?

{A: V(N) secondary, V(P) primary index (both B-tree)]

CSE 414 - Fall 2017 31

10/29/2017

Index Selection Problem 5

V(M, N, P); Suppose the database
has these indexes.
Which ones can the
SELECT * optimizer use?
FROM V

WHERE V.M = 33

INDEX 11 on V(M)

INDEX I2 on V(M, P)
SELECT *

FROM V INDEX I3 on V(P, M)

WHERE V.M = 33 and V.P = 55

CSE 414 - Fall 2017 32

Recap — Indexes

VM. N, P); Suppose the database
has these indexes.
Which ones can the
SELECT *

optimizer use?

FROM V \
WHERE V.M = 33 INDEX I1 on V(M)

Yes

INDEX 12 on V(M, P)
SELECT *

FROM Vv INDEX 13 on V/(P, M)
WHERE V.M = 33 and V.P = 55

CSE 414 - Fall 2017 33

Recap — Indexes

V(M, N, P); Suppose the database
has these indexes.
- Which ones can the
SELECT optimizer use?
FROM V
WHERE V.M = 33 Yés{why?) INDEX 11 on V(M)
INDEX 12 on V(M, P
SELECT * — |Yes e
FROM V INDEX 13 on V(P, M)
WHERE V.M = 33 and V.P = 55

CSE 414 - Fall 2017 34

Recap — Indexes

V(M. N, P); Suppose the database
has these indexes.
Which ones can the
SELECT * optimizer use?
FROM V

WHERE V.M = 33

INDEX 11 on V(M)

No! (why?)

SEEcT INDEX 12 on V(M, P)
FROM V I

ssINDEX I3 on V(P, M)
WHERE V.M = 33 and V.P = 55

CSE 414 - Fall 2017 35

Recap — Indexes

| Movie(mid, title, year) | CLUSTERED INDEX | on Movie(id)
INDEX J on Movie(year)

SELECT * The system uses the index

FROM Movie J for one of the queries,

WHERE year = 2010 but not for the other.

i ?
SELECT* Which and why?

FROM Movie
WHERE year = 1910

CSE 414 - Fall 2017 36

Basic Index Selection Guidelines

» Consider queries in workload in order of importance
— ignore infrequent queries if you also have many writes

+ Consider relations accessed by query
— No point indexing other relations

* Look at WHERE clause for possible search key

» Try to choose indexes that speed-up multiple queries

CSE 414 - Fall 2017 37

10/29/2017

To Cluster or Not
» Range queries benefit mostly from clustering

+ Covering indexes do not need to be clustered:
they work equally well unclustered

— (a covering index for a query is one where every attribute
mentioned in the query is part of the index’s search key)

— in that case, index has all the info you need anyway

CSE 414 - Fall 2017 38

SELECT *
FROM R
WHERE K>? and K<?

Cost

The query
returns only
a few records all records in R

The query
returns almost

100
Percentage of tuples retrieved

CSE 414 - Fall 2017 39

SELECT *
FROM R
WHERE K>? and K<?

Cost Sequential scan

waert
\)5\9,‘36 \“
QN

0 100
Percentage of tuples retrieved

CSE 414 - Fall 2017 40

Midterm Concept Review |

+ relational data model
— set semantics vs. bag semantics
— primary & secondary keys
— foreign keys
— schemas

+ SQL
— CREATE TABLE
— SELECT-FROM-WHERE (SFW)
— joins: inner vs. outer, natural
— group by & aggregation
— ordering
CREATE INDEX

CSE 414 - Spring 2017 a4

Midterm Concept Review Il

« relational queries

— languages for writing them:
« standard relational algebra
« Datalog (even without recursion)
« SQL (even without grouping / aggregation)
— monotone queries are a proper subset
— SFW queries (i.e., w/out subqueries) are monotone

CSE 414 - Spring 2017 42

Midterm Concept Review Il

+ types of indexes
— B+ tree vs. hash
 hash indexes use at most 2 disk accesses
« B+ tree can be used for < predicates
« B+ tree index on (X, Y) also allows searching for X=a matches
— clustered vs non-clustered
« selectivity above 1-2% => not helped by non-clustered indexes

+ cost-based query optimization
— consider choices over logical and physical query plans
« most important choice in latter is choice of join algorithm
« those include nested loop, sorted merge, hash, and indexed joins
— primary goal of the optimizer is to avoid really bad plans

CSE 414 - Spring 2017

43

10/29/2017

