10/11/2017

Database Systems
CSE 414

Lectures 18: Parallel Databases
(Ch. 20.1)

CSE 414 - Fall 20

Announcements

* HW4 is due tomorrow 11pm

Why compute in parallel?

* Multi-cores:
— Most processors have multiple cores
— This trend will increase in the future

+ Big data: too large to fit in main memory
— Distributed query processing on 100-1000 servers
— Widely available now using cloud services

CSE 414 - Fall 2017

Big Data

» Companies, organizations, scientists have
data that is too big (and sometimes too
complex) to be managed without changing
tools and processes

» Complex data processing:
— Decision support queries (SQL w/ aggregates)
— Machine learning (adds linear algebra and iteration)

CSE 414 - Fall 2017

Two Kinds of Parallel Data
Processing

 Parallel databases, developed starting
with the 80s (this lecture)
— OLTP (Online Transaction Processing)

— OLAP (Online Analytic Processing, or
Decision Support)

» General purpose distributed processing:

MapReduce, Spark
— Mostly for Decision Support Queries

CSE 414 - Fall 2017

Performance Metrics
for Parallel DBMSs

P = the number of nodes (processors, computers)
» Speedup:
— More nodes, same data =» higher speed

» Scaleup:
— More nodes, more data = same speed

* OLTP: “Speed” = transactions per second (TPS)
+ Decision Support: “Speed” = query time

CSE 414 - Fall 2017

Linear vs. Non-linear Speedup

Speedup ée"‘\
A\

10/11/2017

Linear vs. Non-linear Scaleup

Batch
Scaleup

Ideal

x1 x5 x10 x15

nodes (=P) AND data size

CSE 414 - Fall 2017

Challenges to
Linear Speedup and Scaleup
« Startup cost
— Cost of starting an operation on many nodes

* Interference
— Contention for resources between nodes

» Stragglers
— Slowest node becomes the bottleneck

CSE 414 - Fall 2017

Architectures for Parallel
Databases

» Shared memory
+ Shared disk

+ Shared nothing

CSE 414 - Fall 2017

Shared Memory
D () N
< l\TJ &
] [
Unterconnection Network}
l \ l
‘ Global Shared Memory ‘

T 1 1
D o D]

CSE 414 - Fall 2

Shared Disk

M ‘ M M

N NN
[Interconneotion NetworkJ
i'fflf fi’i 'fl"
o @ @

.

J

CSE 414 - Fall 2017

Shared Nothing

-\

Interconnection NetworkJ

\
/’_—
|

o
o
-

CSE 414 - Fall 201 13

Shared Memory

* Nodes share both RAM and disk
» Dozens to hundreds of processors

Example: SQL Server runs on a single machine
and can leverage many threads to get a query
to run faster (see query plans)

+ Easier to program and easy to use

» But very expensive to scale: last remaining
cash cows in the hardware industry

CSE 414 - Fall 2017 15

10/11/2017

A Professional Picture...

(Shaaoik (e oo macy |
et it

[
ﬂ i ‘ol lonh ‘od oe ¥
H 1 { e osl el oa [oe oo
= R = =gl -
w $ ﬁ ¢ loeE ohk (Bekl BRR oAk [oek

Shared-Nothing (e.g. Gresnplum] i

Mmstnr

From: Greenplum (now EMC) Database Whitepaper

SAN = “Storage Area Network” I

CSE 414 - Fall 2017

Shared Disk

» All nodes access the same disks

* Found in the largest "single-box" (non-
cluster) multiprocessors

Oracle dominates this class of systems.

Characteristics:

» Also hard to scale past a certain point:
existing deployments typically have fewer
than 10 machines

CSE 414 - Fall 2017

Shared Nothing

* Cluster of machines on high-speed network
» Each machine has its own memory and disk:
— lowest contention

NOTE: Because all machines today have many cores
and many disks, then shared-nothing systems typically
run many "nodes” on a single physical machine.

Characteristics:
» Today, this is the most scalable architecture.
» Most difficult to administer and tune.

{We discuss only Shared Nothing in class

CSE 414 - Fall 2017 17

Approaches to
Parallel Query Evaluation .«
* Inter-query parallelism o e NN
— Transaction per node P B oo
- OLTP \ T

* Inter-operator parallelism
— Operator per node
— Both OLTP and Decision Support

* Intra-operator parallelism
— Operator on multiple nodes
— Decision Support

[We study only intra-operator parallelism: most scalable]

CSE 414 - Fall 2017

Gi

Single Node Query Processing
(Review)

ven relations R(A, B) and S(B, C), no indexes:

+ Selection: O-1p5(R)

— Scan file R, select records with A=123

* Group-by: Ya eumy(R)

— Scan file R, insert into a hash table using attr. A as key
— When a new key is equal to an existing one, add B to the value

+ Join: RS

— Scan file S, insert into a hash table using attr. B as key
— Scan file R, probe the hash table using attr. B

CSE 414 - Fall 20 19

10/11/2017

Distributed Query Processing

+ Data is horizontally partitioned across
many servers

» Operators may require data reshuffling
- not all the needed data is in one place

CSE 414 - Fall 2017

Data:

Horizontal Data Partitioning

Servers:

Ix
e

o

CSE 414 - Fall 2017

Horizontal Data Partitioning

Data: Servers:

1 2

Ix
>
w

};r

Which tuples
go to what server?

‘ H
Ho

CSE 414 - Fall 2017

Horizontal Data Partitioning

» Block Partition:

— Partition tuples arbitrarily s.t. size(R;) = ... = size(Rp)

» Hash partitioned on attribute A:

— Tuple t goes to chunk i, where i = h(t.A) mod P + 1
Range partitioned on attribute A:

— Partition the range of Ainto -© =vy<v ;<. <vp=w
— Tuple t goes to chunk i, if vi.y <t A<y,

CSE 414 - Fall 2017

Parallel GroupBy

Data: R(K, A, B, C)
Query: VA, sum(C)(R)

How can we compute in each case?
* R is hash-partitioned on A
* R is block-partitioned

* R is hash-partitioned on K

easy case!

CSE 414 - Fall 2017

10/11/2017

Parallel GroupBy Parallel Join

- Data: R(K1, A, B), S(K2, B, C)

Data: R(K, A, B. C) - Query: R(K1, A, B) = S(K2, B, C)

Query: YA, sum(C)(R)
. Ris block-partitioned or hash-partitioned on K Initially, both R and S are horizontally partitioned on K1 and K2

S Ry,
Reshuffle R
on attribute A

L ResnufteRonRE
and S on SB

Each server computes
the join locally

CSE 414 - Fall 201 25 CSE 414 - Fall 2017

Data: R(K1, A, B), S(K2, B, C)
Query: R(K1, A, B) m S(K2, B, C)

Speedup and Scaleup

R1 S1 R2 S2
K1 [B K2 [B K1 [B K2 |B
Partiion | [1 |20 101 |50 3 |20 201 |20 » Consider:
2 50 102 |50 4 20 202 |50 _ Query. Ya (C)(R)
. , sumi
M1 M2
— Runtime: dominated by reading chunks from disk

Shuffle N « If we double the number of nodes P, what is
the new running time?

R1’ Ss1’ R2’ s’
1

< s o 18 i T8 o s — Half (each server holds 2 as many chunks)
Local 1 |20 pgl201 |20 2 |50 |pd[101 |50 « |If we double both P and the size of R, what is
Join 3 | 102_|50 the new running time?

4 |20 202 |50

M M2 — Same (each server holds the same # of chunks)
CSE 414 - Fall 2017 27 CSE 414 - Fall 2017

Uniform Data vs. Skewed Data

* Let R(K, A, B, C); which of the following _
partition methods may result in skewed Example using Teradata System

A Customer Row is Inserted ——

partitions? Hashing Alorhm produces
Need to figure out |/2 F\Hcﬁ’ II%IJ
where it belongs...
o — g Tm P's ||Ezuc<; Pc l: i
¢ Block partltlon —_ Uniform) /\ /\

Loading Data into a Parallel DBMS

° HaSh-partltlon - Assuming good

_ Uniform hash function

—On the key K

— On the attribute A May be skewed preengy “Nodez Node 3 Noded
E.g. when all records have
the same value of the
attribute A, then all records

end up in the same partition
CSE 414 - Fall 2017 29 CSE 414 - Fall 2017 30

AMP = “Access Module Processor” = unit of parallelism

10/11/2017

Order(oid, pid, date), Product(pid, ...) Order(oid, pid, date), Product(pid, .

Example Parallel
Query Execution

Find all orders from today, along with the items ordered
AMP 1 AMP 2 AMP 3

0.pid = p.pid [hash |
h(o.pid) h(o.pid) h(o.pid)
CeelecD CGeelecD

date = today()

Example Parallel Query Execution

SELECT *

FROM Order o, Product p
WHERE o.pid = p.pid

AND o.date = today()

date=today() date=today() date=today()
p o Order o Order o Order o

AMP 1 ‘AMPZ AMP 3

CSE 414 - Fall 2017 CSE 414 - Fall 2017 32

Order(oid, pid, date), Product(pid, ...)

Example Parallel
Query Execution

Order(oid, pid, date), Product(pid, ...)

Example Parallel Query Execution

o pid = p.pid o pid = p.pid o pid = p.pid

AMP 1 AMP 2 AMP 3

e

‘(contains all orders and all
lines where hash(pid) = 3

contains all orders and all

Cscan> Cscan

Product p Product p Product p lines where hash(pid) =
‘AMP 1 AMP 2 AMP 3 qontains all orders gnd all
lines where hash(pid) = 1

