Database Systems
CSE 414

Lecture 20-21: Spark
(Ch. 23.1-2)

CSE 414 - Fall 2017 1

Spark

» Open source system from Berkeley
« Distributed processing over HDFS
« Differences from MapReduce:

— Multiple steps, including a fixed number of iterations
» E.g., running Spark SQL

— Stores intermediate results in main memory

— Supports SQL

« Details: http://spark.apache.org/examples.html

CSE 414 - Fall 2017 2

Spark Interface

» Spark supports a Scala interface

» Scala = ext of Java with lambda functions/closures
— will show Scala/Spark examples shortly...

» Spark also supports a SQL interface
It compiles SQL into Scala
For HW6: you only need the SQL interface!

CSE 414 - Fall 2017 3

RDD

* RDD = Resilient Distributed Datasets
— A distributed relation, together with its lineage
— Lineage = expression that says how that relation

was computed = a relational algebra plan

» Spark stores intermediate results as RDD

+ If a server crashes, its RDD in main memory
is lost. However, the driver (=master node)
knows the lineage, and will simply re-
compute the lost partition of the RDD

CSE 414 - Fall 2017 4

Programming in Spark
» A Spark/Scala program consists of:

— Transformations (map, reduceByKey, join...). Lazy
 Construct a new RDD from a previous one
» Compute the new RDD at the first time it is used in an action
— Actions (count, reduce, save...). Eager

+ Compute a result based on an RDD, and either return it to the
driver program or save it to an external storage system

» RDDIT] = an RDD collection of type T

— Partitioned, recoverable (through lineage), not nested
» Seq[T] = a Scala sequence

— Local to a server, may be nested

CSE 414 - Fall 2017 5

Example

Given a large log file hdfs://logdfile.log, retrieve all lines that:
+ Start with “ERROR”

« Contain the string “sqlite”

lines = spark.textFile(“hdfs://logfile.log”);
errors = lines filter(_.startsWith(“ERROR?"));
sqlerrors = errors.filter(_.contains(“sqlite”));

sqlerrors.collect()

collect(): return all elements from the RDD. Should use only on a
small data set that can fit in a single machine’s memory

CSE 414 - Fall 2017 6




Example

Given a large log file hdfs://lodfile.log, retrieve
all lines that:

+ Start with “‘ERROR”

» Contain the string “sqlite”

Transformation:
Not executed yet...

lines = spark.textFile(“hdfs://logfile.log”);

errors = lines.filter(_.startsWith(“ERROR”"));

sqlerrors = errors.filter(_.contains(“sqlite”));

Action:
triggers execution
of entire program

sqlerrors.collect()

CSE 414 - Fall 2017 7

MapReduce Again...

Steps in Spark resemble MapReduce:

* rdd.filter(p) applies in parallel the predicate p
to all elements x of the partitioned collection /
RDD, and returns those x where p(x) = true

- E.g., rdd = {1, 2, 3, 3}. rddfilter(x => x = 1) has
result {2, 3, 3}

» rdd.map(f) applies in parallel the function f to
all elements x of the partitioned collection /
RDD, and returns a new partitioned collection

— E.g.,rdd ={1, 2, 3, 3}. rdd.map(x =>x + 1) has
result {2, 3, 4, 4}

CSE 414 - Fall 2017 8

Scala Primer

» Functions with one argument:
_.contains(“sqlite”)
_>6

» Functions with more arguments
(x => x.contains(“sqlite”))
(x =>x>6)
((x, y) => x+3"y)

* Closures (functions using one or more
variables declared outside the function):
var x = 5; rdd.filter(_ > x)
var s = “sqlite”; rdd.filter(x => x.contains(s))

Persistence

lines = spark.textFile(“hdfs://logfile.log”);
errors = lines filter(_.startsWith(“ERROR”));
sqlerrors = errors.filter(_.contains(“sqlite”));
sqlerrors.collect()

If any server fails before the end, then Spark must restart

CSE 414 - Fall 2017 9
Persistence
RDD:
lines = spark.textFile(“hdfs://logfile.log”); fiter(__startbWith(‘ERROR"))
errors = lines.filter(_.startsWith(“ERROR?”)); | fiiter(_.contpins("sqiite"))
sqlerrors = errors filter(_.contains(“sqlite”));
sqlerrors.collect() @

If any server fails before the end, then Spark must restart

CSE 414 - Fall 2017 1

CSE 414 - Fall 2017 10
Persistence
RDD:
hdfs://logfile.log
lines = spark.textFile(“hdfs://logfile.log”); filter(_startsWithERROR"))
errors = lines.filter(_.startsWith(“ERROR?")); | fitter(_.contains(‘sqiite"))
sqlerrors = errors.filter(_.contains(“sqlite”)); Eresm

sqlerrors.collect()

If any server fails before the end, then Spark must restart

By default, an RDD is

lines = spark.textFile(“hdfs://logfile.log”); re-computed each time
errors = lines filter(_.startsWith(“ERROR”)); | an action is run on it.
errors.persist() New RDD persist() can choose to

sqlerrors = errors filter(_.contains("sqlite”)); | Store an RDD’s content

in memory or on disk,
sqlerrors.collect() so the cor}:tent can be

Spark can re-compute the result from errors reused in multiple

CSE 414 - Fall 2017 actions. 12




Persistence
RDD:
lines = spark.textFile(“hdfs://logfile.log”); fiter(__startbWith(‘ERROR’))
errors = lines.filter(_.startsWith(“ERROR?”")); | filter(_.contpins("sqlite"))
sqlerrors = errors.filter(_.contains(“sqlite”));
sqlerrors.collect() result

If any server fails before the end, then Spark must restart

lines = spark.textFile(“hdfs://logfile.log”);
errors = lines.filter(_.startsWith(“"ERROR”"));

. filt .startsWith(“ERROR”"’
errors.persist() New RDD or(_ starts\With( 0
sqlerrors = errorsfilter(_.contains("sqlite”));

sqlerrors.collect()

hdfs://logfile.log

filter(_.contains("sqlite”))

Spark can re-compute the result from errors
CSE 414 - Fall 2017

R(A,B) |SELECT count() FROMR, §
S(A C)  |WHERER.B>200and S.C <100 and RA=S.A

Example

R = spark.textFile(“R.csv”).map(parseRecord).persist()
S = spark.textFile(“S.csv”).map(parseRecord).persist()
RB = R filter((a, b) => b > 200).persist()

SC = Sfilter((a, c) => ¢ < 100).persist()

J = RB.join(SC).persist()

J.count();

join(): inner join
between two
RDDs containing
key/value pairs

filter((a, b) ¥> b>200) filter((b, c) 7> c<100)

CSE 414 - Fall 2017 14

Programming in Spark

» A Spark/Scala program consists of:
— Transformations (map, reduceByKey, join...). Lazy
— Actions (count, reduce, save...). Eager

» RDDI[T] = an RDD collection of type T
— Partitioned, recoverable (through lineage), not nested

» Seq[T] = a Scala sequence
— Local to a server, may be nested

CSE 414 - Fall 2017 15

Transformations:

map(f: T=>U): RDD[T] => RDD[U]

flatMap(f: T => Seq[U]): RDD[T] => RDD[U]

filter(f: T => Bool): RDD[T] => RDD[T]

groupByKey(): RDD[(K, V)] => RDD[(K, Seq[V])]
reduceByKey(F: (V, V) =>V): RDD[(K, V)] => RDD[(K, V)]

union(): (RDD[T], RDD[T]) => RDDI[T]
ljoin(): (RDD[(K, V)], RDD[(K, W)]) => RDD[(K, (V, W))]
cogroup(): (RDD[(K, V)], RDD[(K, W)]) => RDDI[(K, (Seq[V], Seq[W]))]
cartesian(): (RDDIT], RDD[U]) => RDD[(T, U)]

Actions:

count(): RDDIT] => Long

collect(): RDDI[T] => Seq[T]

reduce(f: (T, T) =>T): RDD[T]=>T

save(path:String): Outputs RDD to a storage system like HDFS

CSE 414 - Fall 2017 16

Example Transformations
 flatMap()

— Apply a function to each element in the RDD and return an RDD
consisting of the elements from all of the iterators

- E.g., rdd = {"a b”, “c d"}. rdd.flatMap(x => x.split(" ")) has result {“a”, “b”,
“o” )

* union()
— Produce an RDD containing elements from both RDDs
— E.g., rdd1 ={1, 2}, rdd2 = {2, 3}, rdd1.union(rdd2) has result {1, 2, 2, 3}

 cartesian()
— Cartesian product with the other RDD
— rdd1.crossProduct(rdd2) has result {(1, 2), (1, 3), (2, 2), (2, 3)}

CSE 414 - Fall 2017 17

Example Transformations — Cont.

For RDDs containing key/value pairs
E.g., rdd ={(1, 2), (3, 4), (3, 6)}, rdd2 = {(3, 9)}

+ groupByKey()
— Group values with the same key
— rdd.groupByKey() has result {(1, [2]), (3, [4, 6])}

* reduceByKey()
— Combine values with the same key
— rdd.reduceByKey((x, y) => x + y) has result {(1, 2), (3, 10)}

CSE 414 - Fall 2017 18




Example Transformations — Cont.

For RDDs containing key/value pairs
E.g., rdd ={(1, 2), (3, 4), (3, 6)}, rdd2 = {(3, 9)}

* mapValues()

— Apply a function to each value of a key/value pair without
changing the key

— rdd.mapValues(x => x + 1) has result {(1, 3), (3, 5), (3, 7)}
= cogroup()
— Group data from both RDDs sharing the same key

— rdd.group(rdd2) has result {(1, ([2], [1)), (3, ([4, 6], [9]))}

CSE 414 - Fall 2017 19

Example Actions
E.g.,rdd ={1, 2, 3, 3}
« count()
— Number of elements in the RDD

— rdd.count() has result 4

* reduce()
— Combine the elements of the RDD together in parallel
— rdd.reduce((x, y) => x +y) has result 9

CSE 414 - Fall 2017 20

MapReduce ~> Spark

input into an RDD

» map phase becomes .flatMap

+ shuffle & sort becomes .groupByKey
» reduce becomes another .flatMap

» save output to HDFS

CSE 414 - Fall 2017 21

SQL ~> Spark

* You know enough to execute SQL on Spark!

+ Idea: (1) SQL to RA + (2) RA on Spark

— o = filter

— T =map

— y = groupByKey

— X = cartesian

— b = join

Spark SQL does small optimizations to RA

» Also chooses between broadcast and parallel joins

CSE 414 - Fall 2017 22

PageRank

» PageRank is an algorithm that assigns to
each page a score, such that pages have
higher scores if more pages with high scores
link to them

» PageRank was introduced by Google, and
essentially defined Google

CSE 414 - Fall 2017 23

Purpose of PageRank

» Compute p(d), the prior probability of the
document d for retrieval purpose

* Not all Web pages are equally important
— E.g., pages on popular Web sites tend to be more

important

» Give weights to Web pages based on how
often they are hyperlinked by other Web pages
— Hyperlink = citation
— More citations = more important

CSE 414 - Fall 2017 24




Model behind PageRank: Random Walk

+ Imagine a Web surfer doing a random walk on
the Web
— Start at a random page

— At each step, go out of the current page along one
of the links on the page

 Each link is chosen with equal probability
* In the steady state, each page has a long-term
visit rate
— Called the page’s PageRank
— It does not matter where the surfer starts
» PageRank = long-term visit rate = steady state
probability

CSE 414 - Fall 2017 25

Random Walk — Cont.

* A Markov chain consists of N states + an
N x N transition probability matrix P

 state = page

At each step, the Web surfer is on exactly

one page, say page i

» For 1=i,j<N, the matrix entry P; is the
probability of moving from page i {o pagejin
the next step

P.
Foreveryi, X% P =1

CSE 414 - Fall 2017 26

Random Walk — Cont.

» Dead end: a Web page with no outgoing link
* r: the teleportation rate
— A parameter whose value is between 0 and 1
— Typical value: 0.15
» At a dead end (say page i), choose a
random Web page with equal probability 1/N
and jump to it
— P = 1/N for every |

CSE 414 - Fall 2017 27

Random Walk — Cont.

* Atanon-dead end (say page i),
— With probability r, jump to a random web page
« to each page with a probability of r/N
— With the remaining probability 1-r, go out on a
random hyperlink
* C;: the number of links going out of page i
* Go out on each of the C; links with a probability of

Example Web Graph

C,=3 (d,, dg, ds)
C,=2(dy, dy)
(4,) C4=2 (ds, )
C,=0 (dead end)
Cs=1(d,)

29

CSE 414 - Fall 2017

(1-r)/C;
r
N if there is no link going from page i to page j
Pj=3r 1-7
ﬁ+ ,if there is a link going from page i to page j
i
CSE 414 - Fall 2017 28
Transition Probability
Matrix
EENEEENENEE
d a r 1-r r 1-r a r 1-r
1 5 573 5tT3 5 5773 a3, d,
7 =7 r T 7 =7 r 5)
4, = 5 5t7 5 ce2dudy
r r ro1-r r r 1-r C3=2(dy ds)
d, 5 5 st 5 5772 C,=0 (dead
d 1 1 1 1 1 end)
4 5 5 5 5 5 Cs=1(d,)
r 4 r 1—1 4
ds 5 5 5 st §

CSE 414 - Fall 2017 30




Ergodicity Theorem

» Theorem in stochastic processes:

Web-graph+teleporting has a steady-

state probability distribution

= Each page in the Web-

graph+teleporting has a PageRank

+ Steady state probability vector IT = (r,,
Ty, vy Tp)

— m is the long-term visit rate (or PageRank)
of page i

CSE 414 - Fall 2017 31

Probability Vector

» At a specific step, a probability (row)
vector X = (X4 , ..., X) tells us where
the random walk is at
— The random walk is on page i with

probability x;
-3 =1

* Example:

-(01 02 03 015 0.25)
1 2 3 4 5

CSE 414 - Fall 2017 32

Change in Probability Vector

« If the probability vector in the current step is X
= (X4, ..., Xy), the probability vector in the next
step is XP
— In the next step, the random walk is on page j with

probability ¥, x; - P;;

(xl XN) e 1 ...

CSE 414 - Fall 2017 33

Compute the Steady
State Probability Vector

Suppose the distribution has reached the steady
state I1 = (r;, m,, ..., T) in the current step

The distribution in the next step is TTP, which
should also be in steady state
SoIl=IIP
Solving this matrix equation gives us IT
— TITis the principal left eigenvector for P
* i.e., the left eigenvector with the largest eigenvalue

CSE 414 - Fall 2017 34

Example of IT=T1P

T

My = (5+1r)+1r2 Lamy (54 50) 4wy g -

5

--

r T, rlr 1__r‘I r
5 5F :5 3] B
— r r lr 1—r i
d r 1-r v 1 L r v
2 5t 5 4 5 :s+ 2 5
d T v |r+1—r| v r+1—r
3 5 5 :5 7 ] B 57
o1 1
d 1 Loy 1 1 1
& 5 5 1 5 : 5 5
T r 1 T il = r
- - - 1T v -
ds 5 5 :_ 5 571 5
CSE 414 - Fall 2017 35

Another Way of Writing IT=T1 P

» Assume no dead end for now

» Suppose pages Ty, ..., T, have links to
page A

* C(T,): the number of links going out of
page T;

PageRank(A)

T td-n PageRank(T;)

TN )
PageRank(T,,)

C(Tw)

CSE 414 - Fall 2017 36




One Way of Computing the
PageRank I1

« Start with any distribution X

» E.g., uniform distribution

After one step, we get XP

After two steps, we get XP?

After k steps, we get XPk
Algorithm: multiply X by increasing
powers of P until convergence
This is called the power method

CSE 414 - Fall 2017 37

PageRank

fori=1toN: Random walk interpretation:
x[i] = 1/N
Start at a random node i

repeat
forj =1 to N: contribs[j] = 0 Ateach s_tep,_ randomly Cho.ose
fori=1toN: an outgoing link and follow it.
k = linksl[i].length()
for j in linksfi: Repeat for a very long time

contribs[j] += x[i] / k
fori =1 to N: x[i] = contribs[i]
until convergence
/* usually 10-20 iterations */

X[i] = prob. that we are at node i

CSE 414 - Fall 2017 38

PageRank

fori=1toN: Random walk interpretation:
x[i] = 1/N
Start at a random node i

repeat
for j = 1 to N: contribs[] = 0 At each s.tep,. randomly chopse
fori=1toN: an outgoing link and follow it.
k = links][i].length()
for j in linksli]: Improvement: with small prob., a

contribs[j] += x[i] / k
fori=1to N: x[i] = contribs][i]

until convergence x[i] = r/N + (1-r)*contribs[i]

/* usually 10-20 iterations */
where r €(0,1) is the teleportation rate

restart at a random node.

CSE 414 - Fall 2017 39

links: RDDJurl:string, links:SEQ[string]]
ranks: RDD[url:string, rank:float]

PageRank

fori=1toN: " SF.)ARK . .
X[l = 1N val links = spark.textFile(..).map(..).persist()
var ranks = ... // RDD of (URL, 1/n) pairs
repeat for (k <- 1 to ITERATIONS) {
for j = 1 to N: contribs[j] = 0 // Build RDD of (targetURL, float) pairs
fori=1toN: /I with contributions sent by each page
k = linksi].length() val contribs = links.join(ranks).flatMap {
for j in links[i: (url, (links, rank)) =>

contribs[j] += x[i] / k
fori=1to N: x[i] = r/N + (1-r)*contribs][i]
until convergence
/* usually 10-20 iterations */

links.map(dest => (dest, rank/links.size))

/I Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x, y) => x+y)
.mapValues(sum => a/n + (1-a)*sum)

}

CSE 414 - Fall 2017 40

Google Dataflow

+ Similar to Spark/Scala

» Allows you to lazily build pipelines and then
execute them

* Much simpler than multi-job MapReduce

CSE 414 - Fall 2017 a4

Summary

« Parallel databases
— Pre-defined relational operators
— Optimization
— Transactions
« MapReduce
— User-defined map and reduce functions
— Must manually implement/optimize relational operators
— No updates/transactions
* Spark
— Pre-defined relational operators
— Must manually optimize
— No updates/transactions

CSE 414 - Fall 2017 42




Summary cont.

All of these technologies use dataflow engines:
— Google Dataflow (on top of MapReduce)
— Spark (on top of Hadoop)
— AsterixDB (on top of Hyracks)
Spark & AsterixDB map SQL to a dataflow pipeline
— SQL ~> RA ~> dataflow operators (group, join, map)
— could do the same thing for Google Dataflow
None of these systems optimize RA very well (as of 2015)
— Spark has no indexes
— AsterixDB has indexes, but no statistics
Future work should improve that

CSE 414 - Fall 2017 43




