
11/29/2017

1

Database Systems
CSE 414

Lecture 26: More Transactions

(Ch 8.1-3)

CSE 414 - Fall 2017 1

Announcements

• HW7 is due today 11pm

CSE 414 - Fall 2017 2

Outline

• Serial and Serializable Schedules (18.1)

• Conflict Serializability (18.2)

• Locks (18.3)

CSE 414 - Fall 2017 3 4

Review: Transactions
• Problem: An application must perform several

writes and reads to the database, as a unit

• Solution: multiple actions of the application are
bundled into one unit called a Transaction

• Turing awards to database researchers
– Charles Bachman 1973 for CODASYL

– Edgar Codd 1981 for relational databases

– Jim Gray 1998 for transactions

– Michael Stonebraker 2014 for modern database systems

CSE 414 - Fall 2017

Review: TXNs in SQL

CSE 414 - Fall 2017 5

BEGIN TRANSACTION
[SQL statements]

COMMIT or
ROLLBACK (=ABORT)

BEGIN TRANSACTION
[SQL statements]

COMMIT or
ROLLBACK (=ABORT)

[single SQL statement][single SQL statement]

If BEGIN… missing,
then TXN consists

of a single instruction

If BEGIN… missing,
then TXN consists

of a single instruction
6

Review: ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txn moves from a state where integrity holds, to

another where integrity holds
• Isolated

– Effect of txns is the same as txns running one after
another (i.e., looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in the

database

CSE 414 - Fall 2017

11/29/2017

2

Isolation: The Problem

• Multiple transactions are running concurrently
T1, T2, …

• They read/write some common elements
A1, A2, …

• How can we prevent unwanted interference ?

• The SCHEDULER is responsible for that

CSE 414 - Fall 2017 7

Notation says nothing about tables…
(These techniques apply more generally.)
Notation says nothing about tables…
(These techniques apply more generally.)

Schedules

CSE 414 - Fall 2017 8

A schedule is a sequence
of interleaved actions
from all transactions

A schedule is a sequence
of interleaved actions
from all transactions

Serial Schedule

• A serial schedule is one, in which transactions are
executed one after the other, in some sequential
order

• Fact: nothing can go wrong if the system executes
transactions serially
– But database systems don’t do that, because we need

better performance

9CSE 414 - Fall 2017

Example

T1 T2

READ(A, t) READ(A, s)

t := t+100 s := s*2

WRITE(A, t) WRITE(A, s)

READ(B, t) READ(B, s)

t := t+100 s := s*2

WRITE(B, t) WRITE(B, s)

CSE 414 - Fall 2017 10

A and B are elements
in the database.
t and s are variables
in txn source code

A and B are elements
in the database.
t and s are variables
in txn source code

A Serial Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s*2
WRITE(A, s)
READ(B, s)
s := s*2
WRITE(B, s)

CSE 414 - Fall 2017 11

T
im

e

Another Serial Schedule
T1 T2

READ(A, s)
s := s*2
WRITE(A, s)
READ(B, s)
s := s*2
WRITE(B, s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B, t)

CSE 414 - Fall 2017 12

T
im

e

11/29/2017

3

Serializable Schedule

CSE 414 - Fall 2017 13

A schedule is serializable if it is
equivalent to some serial schedule
A schedule is serializable if it is
equivalent to some serial schedule

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A, s)
s := s*2
WRITE(A, s)

READ(B, t)
t := t+100
WRITE(B, t)

READ(B, s)
s := s*2
WRITE(B, s)

This is a serializable schedule.
This is NOT a serial schedule
This is a serializable schedule.
This is NOT a serial schedule

CSE 414 - Fall 2017 14

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A, s)
s := s*2
WRITE(A, s)
READ(B, s)
s := s*2
WRITE(B, s)

READ(B, t)
t := t+100
WRITE(B, t)

CSE 414 - Fall 2017 15

How do We Know if a Schedule
is Serializable?

CSE 414 - Fall 2017 16

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)
T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation

Key Idea: Focus on conflicting operations

Conflicts

• Write-Read – WR

• Read-Write – RW

• Write-Write – WW

CSE 414 - Fall 2017 17

Conflict Serializability

Conflicts: (it means: cannot be swapped)

ri(X); wi(Y)ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)ri(X); wj(X)
CSE 414 - Fall 2017 18

11/29/2017

4

Conflict Serializability

• A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swaps of adjacent non-conflicting actions

• Every conflict-serializable schedule is serializable

• A serializable schedule may not necessarily be
conflict-serializable

CSE 414 - Fall 2017 19

Conflict Serializability

CSE 414 - Fall 2017 20

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 414 - Fall 2017 21

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 414 - Fall 2017 22

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 414 - Fall 2017 23

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• The schedule is conflict-serializable iff the
precedence graph is acyclic

CSE 414 - Fall 2017 24

11/29/2017

5

Example 1

CSE 414 - Fall 2017 25

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE 414 - Fall 2017 26

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializableThis schedule is conflict-serializable

AB

Example 2

CSE 414 - Fall 2017 27

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSE 414 - Fall 2017 28

1 2 3

This schedule is NOT conflict-serializableThis schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Scheduler

• Scheduler is the module that schedules the
transaction’s actions, ensuring serializability

• Also called Concurrency Control Manager

• We discuss next how a scheduler may be
implemented

CSE 414 - Fall 2017 29

Implementing a Scheduler

Major differences between database vendors

• Locking Scheduler
– Aka “pessimistic concurrency control”

– SQLite, SQL Server, DB2, Spanner

• Multiversion Concurrency Control (MVCC)
– Aka “optimistic concurrency control”

– Postgres, Oracle, Spanner

We discuss only locking in 414We discuss only locking in 414

30CSE 414 - Fall 2017

11/29/2017

6

Locking Scheduler

Simple idea:

• Each element has a unique lock

• Each transaction must first acquire the lock
before reading/writing that element

• If the lock is taken by another transaction,
then wait

• The transaction must release the lock(s)

CSE 414 - Fall 2017 31

By using locks, scheduler ensures conflict-serializabilityBy using locks, scheduler ensures conflict-serializability

What Data Elements are Locked?

Major differences between vendors:

• Lock on the entire database
– SQLite

• Lock on individual records
– SQL Server, DB2, etc.

CSE 414 - Fall 2017 32

Let’s Study SQLite First

• SQLite is very simple

• More info: http://www.sqlite.org/atomiccommit.html

• Lock types
– READ LOCK (to read)

– RESERVED LOCK (to write)

– PENDING LOCK (wants to commit)

– EXCLUSIVE LOCK (to commit)

CSE 414 - Fall 2017 33

SQLite

Step 1: when a transaction begins

• Acquire a READ LOCK (aka "SHARED" lock)

• All these transactions may read happily

• They all read data from the database file

• If the transaction commits without writing
anything, then it simply releases the lock

CSE 414 - Fall 2017 34

SQLite

Step 2: when one transaction wants to write

• Acquire a RESERVED LOCK

• May coexists with many READ LOCKs

• Writer TXN may write; these updates are only
in main memory; others don't see the updates

• Reader TXN continue to read from the file

• New readers accepted

• No other TXN is allowed a RESERVED LOCK

CSE 414 - Fall 2017 35

SQLite

Step 3: when writer transaction wants to commit,
it needs exclusive lock, which can’t coexists with
read locks

• Acquire a PENDING LOCK

• May coexists with old READ LOCKs

• No new READ LOCKS are accepted

• Wait for all read locks to be released

CSE 414 - Fall 2017 36

Why not write
to disk right now?

Why not write
to disk right now?

11/29/2017

7

SQLite

Step 4: when all read locks have been released

• Acquire the EXCLUSIVE LOCK

• Nobody can touch the database now

• All updates are written permanently to the
database file

• Release the lock and COMMIT

CSE 414 - Fall 2017 37

SQLite

CSE 414 - Fall 2017 38

NoneNone READ
LOCK
READ
LOCK

RESERVED
LOCK

RESERVED
LOCK

PENDING
LOCK

PENDING
LOCK

EXCLUSIVE
LOCK

EXCLUSIVE
LOCK

commit executed

begin transaction first write no more read lockscommit requested

commit

SQLite Demo

create table R(a int, b int);

insert into R values (1, 10);

insert into R values (2, 20);

insert into R values (3, 30);

CSE 414 - Fall 2017 39

Demonstrating Locking in SQLite

T1:

begin transaction;

select * from R;

-- T1 has a READ LOCK

T2:

begin transaction;

select * from R;

-- T2 has a READ LOCK

CSE 414 - Fall 2017 40

Demonstrating Locking in SQLite

T1:

update R set b=11 where a=1;

-- T1 has a RESERVED LOCK

T2:

update R set b=21 where a=2;

-- T2 asked for a RESERVED LOCK: DENIED

CSE 414 - Fall 2017 41

Demonstrating Locking in SQLite

T3:

begin transaction;

select * from R;

commit;

-- everything works fine, could obtain READ LOCK

CSE 414 - Fall 2017 42

11/29/2017

8

Demonstrating Locking in SQLite

T1:

commit;

-- SQL error: database is locked

-- T1 asked for PENDING LOCK -- GRANTED

-- T1 asked for EXCLUSIVE LOCK -- DENIED

CSE 414 - Fall 2017 43

Demonstrating Locking in SQLite

T3':

begin transaction;

select * from R;

-- T3 asked for READ LOCK-- DENIED (due to T1)

T2:

commit;

-- releases the last READ LOCK; T1 can commit

CSE 414 - Fall 2017 44

